Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
Evol Appl ; 17(2): e13663, 2024 Feb.
Article En | MEDLINE | ID: mdl-38390377

Climate-induced expansion of invasive hybridization (breeding between invasive and native species) poses a significant threat to the persistence of many native species worldwide. In the northern U.S. Rocky Mountains, hybridization between native cutthroat trout and non-native rainbow trout has increased in recent decades due, in part, to climate-driven increases in water temperature. It has been postulated that invasive hybridization may enhance physiological tolerance to climate-induced thermal stress because laboratory studies indicate that rainbow trout have a higher thermal tolerance than cutthroat trout. Here, we assessed whether invasive hybridization improves cardiac performance response to acute water temperature stress of native wild trout populations. We collected trout from four streams with a wide range of non-native admixture among individuals and with different temperature and streamflow regimes in the upper Flathead River drainage, USA. We measured individual cardiac performance (maximum heart rate, "MaxHR", and temperature at arrhythmia, "ArrTemp") during laboratory trials with increasing water temperatures (10-28°C). Across the study populations, we observed substantial variation in cardiac performance of individual trout when exposed to thermal stress. Notably, we found significant differences in the cardiac response to thermal regimes among native cutthroat trout populations, suggesting the importance of genotype-by-environment interactions in shaping the physiological performance of native cutthroat trout. However, rainbow trout admixture had no significant effect on cardiac performance (MaxHR and ArrTemp) within any of the three populations. Our results indicate that invasive hybridization with a warmer-adapted species does not enhance the cardiac performance of native trout under warming conditions. Maintaining numerous populations across thermally and hydrologically diverse stream environments will be crucial for native trout to adapt and persist in a warming climate.

2.
Mol Ecol Resour ; 24(2): e13893, 2024 Feb.
Article En | MEDLINE | ID: mdl-37966259

Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.


Conservation of Natural Resources , Genomics , Humans , Conservation of Natural Resources/methods , Biodiversity , Genome
3.
Mol Ecol Resour ; 23(4): 803-817, 2023 May.
Article En | MEDLINE | ID: mdl-36704853

RNA sequencing (RNA-Seq) is popular for measuring gene expression in non-model organisms, including wild populations. While RNA-Seq can detect gene expression variation among wild-caught individuals and yield important insights into biological function, sampling methods can also affect gene expression estimates. We examined the influence of multiple technical variables on estimated gene expression in a non-model fish, the westslope cutthroat trout (Oncorhynchus clarkii lewisi), using two RNA-Seq library types: 3' RNA-Seq (QuantSeq) and whole mRNA-Seq (NEB). We evaluated effects of dip netting versus electrofishing, and of harvesting tissue immediately versus 5 min after euthanasia on estimated gene expression in blood, gill, and muscle. We found no significant differences in gene expression between sampling methods or tissue collection times with either library type. When library types were compared using the same blood samples, 58% of genes detected by both NEB and QuantSeq showed significantly different expression between library types, and NEB detected 31% more genes than QuantSeq. Although the two library types recovered different numbers of genes and expression levels, results with NEB and QuantSeq were consistent in that neither library type showed differences in gene expression between sampling methods and tissue harvesting times. Our study suggests that researchers can safely rely on different fish sampling strategies in the field. In addition, while QuantSeq is more cost effective, NEB detects more expressed genes. Therefore, when it is crucial to detect as many genes as possible (especially low expressed genes), when alternative splicing is of interest, or when working with an organism lacking good genomic resources, whole mRNA-Seq is more powerful.


Oncorhynchus , Animals , RNA-Seq , Sequence Analysis, RNA/methods , Oncorhynchus/genetics , Gene Library , RNA, Messenger/genetics , Tissue and Organ Harvesting , Gene Expression , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods
4.
J Hered ; 113(4): 453-471, 2022 07 23.
Article En | MEDLINE | ID: mdl-35569065

Understanding how environmental variation influences population genetic structure can help predict how environmental change influences population connectivity, genetic diversity, and evolutionary potential. We used riverscape genomics modeling to investigate how climatic and habitat variables relate to patterns of genetic variation in 2 stonefly species, one from mainstem river habitats (Sweltsa coloradensis) and one from tributaries (Sweltsa fidelis) in 40 sites in northwest Montana, USA. We produced a draft genome assembly for S. coloradensis (N50 = 0.251 Mbp, BUSCO > 95% using "insecta_ob9" reference genes). We genotyped 1930 SNPs in 372 individuals for S. coloradensis and 520 SNPs in 153 individuals for S. fidelis. We found higher genetic diversity for S. coloradensis compared to S. fidelis, but nearly identical genetic differentiation among sites within each species (both had global loci median FST = 0.000), despite differences in stream network location. For landscape genomics and testing for selection, we produced a less stringently filtered data set (3454 and 1070 SNPs for S. coloradensis and S. fidelis, respectively). Environmental variables (mean summer precipitation, slope, aspect, mean June stream temperature, land cover type) were correlated with 19 putative adaptive loci for S. coloradensis, but there was only one putative adaptive locus for S. fidelis (correlated with aspect). Interestingly, we also detected potential hybridization between multiple Sweltsa species which has never been previously detected. Studies like ours, that test for adaptive variation in multiple related species are needed to help assess landscape connectivity and the vulnerability of populations and communities to environmental change.


Insecta , Selection, Genetic , Adaptation, Physiological/genetics , Animals , Ecosystem , Genetic Drift , Genetic Structures , Genetics, Population , Insecta/genetics , Polymorphism, Single Nucleotide
5.
Biol Rev Camb Philos Soc ; 97(4): 1712-1735, 2022 08.
Article En | MEDLINE | ID: mdl-35451197

Invasive alien species (IAS) are a rising threat to biodiversity, national security, and regional economies, with impacts in the hundreds of billions of U.S. dollars annually. Proactive or predictive approaches guided by scientific knowledge are essential to keeping pace with growing impacts of invasions under climate change. Although the rapid development of diverse technologies and approaches has produced tools with the potential to greatly accelerate invasion research and management, innovation has far outpaced implementation and coordination. Technological and methodological syntheses are urgently needed to close the growing implementation gap and facilitate interdisciplinary collaboration and synergy among evolving disciplines. A broad review is necessary to demonstrate the utility and relevance of work in diverse fields to generate actionable science for the ongoing invasion crisis. Here, we review such advances in relevant fields including remote sensing, epidemiology, big data analytics, environmental DNA (eDNA) sampling, genomics, and others, and present a generalized framework for distilling existing and emerging data into products for proactive IAS research and management. This integrated workflow provides a pathway for scientists and practitioners in diverse disciplines to contribute to applied invasion biology in a coordinated, synergistic, and scalable manner.


Biodiversity , Introduced Species
6.
Anim Genet ; 53(3): 452-459, 2022 Jun.
Article En | MEDLINE | ID: mdl-35288946

We investigated the controversial origin of domestic sheep (Ovis aries) using large samples of contemporary and ancient domestic individuals and their closest wild relatives: the Asiatic mouflon (Ovis gmelini), the urial (Ovis vignei) and the argali (Ovis ammon). A phylogeny based on mitochondrial DNA, including 213 new cytochrome-b sequences of wild Ovism confirmed that O. gmelini is the maternal ancestor of sheep and precluded mtDNA contributions from O. vignei (and O. gmelini × O. vignei hybrids) to domestic lineages. We also produced 54 new control region sequences showing shared haplogroups (A, B, C and E) between domestic sheep and wild O. gmelini which localized the domestication center in eastern Anatolia and central Zagros, excluding regions further east where exclusively wild haplogroups were found. This overlaps with the geographic distribution of O. gmelini gmelini, further suggesting that the maternal origin of domestic sheep derives from this subspecies. Additionally, we produced 57 new CR sequences of Neolithic sheep remains from a large area covering Anatolia to Europe, showing the early presence of at least three mitochondrial haplogroups (A, B and D) in Western colonization routes. This confirmed that sheep domestication was a large-scale process that captured diverse maternal lineages (haplogroups).


DNA, Mitochondrial , Sheep, Domestic , Animals , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Haplotypes , Phylogeny , Sheep/genetics , Sheep, Domestic/genetics , Turkey
7.
Mol Ecol Resour ; 22(2): 679-694, 2022 Feb.
Article En | MEDLINE | ID: mdl-34351050

Here, we present an annotated, chromosome-anchored, genome assembly for Lake Trout (Salvelinus namaycush) - a highly diverse salmonid species of notable conservation concern and an excellent model for research on adaptation and speciation. We leveraged Pacific Biosciences long-read sequencing, paired-end Illumina sequencing, proximity ligation (Hi-C) sequencing, and a previously published linkage map to produce a highly contiguous assembly composed of 7378 contigs (contig N50 = 1.8 Mb) assigned to 4120 scaffolds (scaffold N50 = 44.975 Mb). Long read sequencing data were generated using DNA from a female double haploid individual. 84.7% of the genome was assigned to 42 chromosome-sized scaffolds and 93.2% of Benchmarking Universal Single Copy Orthologues were recovered, putting this assembly on par with the best currently available salmonid genomes. Estimates of genome size based on k-mer frequency analysis were highly similar to the total size of the finished genome, suggesting that the entirety of the genome was recovered. A mitochondrial genome assembly was also produced. Self-versus-self synteny analysis allowed us to identify homeologs resulting from the salmonid specific autotetraploid event (Ss4R) as well as regions exhibiting delayed rediploidization. Alignment with three other salmonid genomes and the Northern Pike (Esox lucius) genome also allowed us to identify homologous chromosomes in related taxa. We also generated multiple resources useful for future genomic research on Lake Trout, including a repeat library and a sex-averaged recombination map. A novel RNA sequencing data set for liver tissue was also generated in order to produce a publicly available set of annotations for 49,668 genes and pseudogenes. Potential applications of these resources to population genetics and the conservation of native populations are discussed.


Chromosomes , Genome , Animals , Chromosomes/genetics , Female , Genetic Linkage , Synteny , Trout/genetics
8.
Nat Rev Genet ; 22(12): 791-807, 2021 12.
Article En | MEDLINE | ID: mdl-34408318

The rapidly emerging field of macrogenetics focuses on analysing publicly accessible genetic datasets from thousands of species to explore large-scale patterns and predictors of intraspecific genetic variation. Facilitated by advances in evolutionary biology, technology, data infrastructure, statistics and open science, macrogenetics addresses core evolutionary hypotheses (such as disentangling environmental and life-history effects on genetic variation) with a global focus. Yet, there are important, often overlooked, limitations to this approach and best practices need to be considered and adopted if macrogenetics is to continue its exciting trajectory and reach its full potential in fields such as biodiversity monitoring and conservation. Here, we review the history of this rapidly growing field, highlight knowledge gaps and future directions, and provide guidelines for further research.


Genetic Variation , Genetics , Animals , Biodiversity , Databases, Genetic , Genetic Techniques , Genetics, Population , Humans , Phylogeography , Workflow
9.
J Hered ; 112(4): 313-327, 2021 07 15.
Article En | MEDLINE | ID: mdl-33860294

A current challenge in the fields of evolutionary, ecological, and conservation genomics is balancing production of large-scale datasets with additional training often required to handle such datasets. Thus, there is an increasing need for conservation geneticists to continually learn and train to stay up-to-date through avenues such as symposia, meetings, and workshops. The ConGen meeting is a near-annual workshop that strives to guide participants in understanding population genetics principles, study design, data processing, analysis, interpretation, and applications to real-world conservation issues. Each year of ConGen gathers a diverse set of instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we summarize key lessons learned from the 2019 meeting and more recent updates to the field with a focus on big data in conservation genomics. First, we highlight classical and contemporary issues in study design that are especially relevant to working with big datasets, including the intricacies of data filtering. We next emphasize the importance of building analytical skills and simulating data, and how these skills have applications within and outside of conservation genetics careers. We also highlight recent technological advances and novel applications to conservation of wild populations. Finally, we provide data and recommendations to support ongoing efforts by ConGen organizers and instructors-and beyond-to increase participation of underrepresented minorities in conservation and eco-evolutionary sciences. The future success of conservation genetics requires both continual training in handling big data and a diverse group of people and approaches to tackle key issues, including the global biodiversity-loss crisis.


Big Data , Conservation of Natural Resources , Biological Evolution , Genetics, Population , Genomics , Humans
10.
Am Nat ; 197(5): 511-525, 2021 05.
Article En | MEDLINE | ID: mdl-33908831

AbstractThe rapid global loss of biodiversity calls for improved predictions of how populations will evolve and respond demographically to ongoing environmental change. The heritability (h2) of selected traits has long been known to affect evolutionary and demographic responses to environmental change. However, effects of the genetic architecture underlying the h2 of a selected trait on population responses to selection are less well understood. We use deterministic models and stochastic simulations to show that the genetic architecture underlying h2 can dramatically affect population viability during environmental change. Polygenic trait architectures (many loci, each with a small phenotypic effect) conferred higher population viability than genetic architectures with the same initial h2 and large-effect loci under a wide range of scenarios. Population viability also depended strongly on the initial frequency of large-effect beneficial alleles, with moderately low initial allele frequencies conferring higher viability than rare or already-frequent large-effect alleles. Greater population viability associated with polygenic architectures appears to be due to higher short-term evolutionary potential compared with architectures with large-effect loci. These results suggest that integrating information on the trait genetic architecture into quantitative genetic and population viability analysis will substantially improve our understanding and prediction of evolutionary and demographic responses following environmental change.


Biological Evolution , Climate Change , Genetic Fitness , Models, Genetic , Multifactorial Inheritance , Alleles , Biodiversity , Computer Simulation , Gene Frequency , Phenotype , Selection, Genetic
11.
Evol Appl ; 14(3): 821-833, 2021 Mar.
Article En | MEDLINE | ID: mdl-33767755

Human-mediated hybridization threatens many native species, but the effects of introgressive hybridization on life-history expression are rarely quantified, especially in vertebrates. We quantified the effects of non-native rainbow trout admixture on important life-history traits including growth and partial migration behavior in three populations of westslope cutthroat trout over five years. Rainbow trout admixture was associated with increased summer growth rates in all populations and decreased spring growth rates in two populations with cooler spring temperatures. These results indicate that non-native admixture may increase growth under warmer conditions, but cutthroat trout have higher growth rates during cooler periods. Non-native admixture consistently increased expression of migratory behavior, suggesting that there is a genomic basis for life-history differences between these species. Our results show that effects of interspecific hybridization on fitness traits can be the product of genotype-by-environment interactions even when there are minor differences in environmental optima between hybridizing species. These results also indicate that while environmentally mediated traits like growth may play a role in population-level consequences of admixture, strong genetic influences on migratory life-history differences between these species likely explains the continued spread of non-native hybridization at the landscape-level, despite selection against hybrids at the population-level.

12.
Ecol Lett ; 24(6): 1282-1284, 2021 Jun.
Article En | MEDLINE | ID: mdl-33749962

Millette et al. (Ecology Letters, 2020, 23:55-67) reported no consistent worldwide anthropogenic effects on animal genetic diversity using repurposed mitochondrial DNA sequences. We reexamine data from this study, describe genetic marker and scale limitations which might lead to misinterpretations with conservation implications, and provide advice to improve future macrogenetic studies.


DNA, Mitochondrial , Genetic Variation , Animals , DNA, Mitochondrial/genetics , Ecology , Genetic Markers
13.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article En | MEDLINE | ID: mdl-33431676

Pathogen interactions arising during coinfection can exacerbate disease severity, for example when the immune response mounted against one pathogen negatively affects defense of another. It is also possible that host immune responses to a pathogen, shaped by historical evolutionary interactions between host and pathogen, may modify host immune defenses in ways that have repercussions for other pathogens. In this case, negative interactions between two pathogens could emerge even in the absence of concurrent infection. Parasitic worms and tuberculosis (TB) are involved in one of the most geographically extensive of pathogen interactions, and during coinfection worms can exacerbate TB disease outcomes. Here, we show that in a wild mammal natural resistance to worms affects bovine tuberculosis (BTB) severity independently of active worm infection. We found that worm-resistant individuals were more likely to die of BTB than were nonresistant individuals, and their disease progressed more quickly. Anthelmintic treatment moderated, but did not eliminate, the resistance effect, and the effects of resistance and treatment were opposite and additive, with untreated, resistant individuals experiencing the highest mortality. Furthermore, resistance and anthelmintic treatment had nonoverlapping effects on BTB pathology. The effects of resistance manifested in the lungs (the primary site of BTB infection), while the effects of treatment manifested almost entirely in the lymph nodes (the site of disseminated disease), suggesting that resistance and active worm infection affect BTB progression via distinct mechanisms. Our findings reveal that interactions between pathogens can occur as a consequence of processes arising on very different timescales.


Buffaloes/immunology , Disease Resistance , Haemonchiasis/microbiology , Lung/immunology , Lymph Nodes/immunology , Trichostrongylosis/microbiology , Tuberculosis, Bovine/microbiology , Animals , Antinematodal Agents/pharmacology , Buffaloes/microbiology , Buffaloes/parasitology , Cattle , Coinfection , Disease Progression , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/microbiology , Eosinophils/parasitology , Feces/parasitology , Female , Fenbendazole/pharmacology , Haemonchiasis/drug therapy , Haemonchiasis/mortality , Haemonchiasis/parasitology , Haemonchus/drug effects , Haemonchus/genetics , Haemonchus/pathogenicity , Immunoglobulin A/blood , Lung/drug effects , Lung/microbiology , Lung/parasitology , Lymph Nodes/drug effects , Lymph Nodes/microbiology , Lymph Nodes/parasitology , Mast Cells/drug effects , Mast Cells/immunology , Mast Cells/microbiology , Mast Cells/parasitology , Mycobacterium bovis/growth & development , Mycobacterium bovis/pathogenicity , Severity of Illness Index , Survival Analysis , Trichostrongylosis/drug therapy , Trichostrongylosis/mortality , Trichostrongylosis/parasitology , Trichostrongylus/drug effects , Trichostrongylus/genetics , Trichostrongylus/pathogenicity , Tuberculosis, Bovine/drug therapy , Tuberculosis, Bovine/mortality , Tuberculosis, Bovine/parasitology
14.
Mol Ecol Resour ; 21(2): 379-393, 2021 Feb.
Article En | MEDLINE | ID: mdl-32881365

Estimating the effective population size and effective number of breeders per year (Nb ) can facilitate early detection of population declines. We used computer simulations to quantify bias and precision of the one-sample LDNe estimator of Nb in age-structured populations using a range of published species life history types, sample sizes, and DNA markers. Nb estimates were biased by ~5%-10% when using SNPs or microsatellites in species ranging from fishes to mosquitoes, frogs, and seaweed. The bias (high or low) was similar for different life history types within a species suggesting that life history variation in populations will not influence Nb estimation. Precision was higher for 100 SNPs (H ≈ 0.30) than for 15 microsatellites (H ≈ 0.70). Confidence intervals (CIs) were occasionally too narrow, and biased high when Nb was small (Nb  < 50); however, the magnitude of bias would unlikely influence management decisions. The CIs (from LDNe) were sufficiently narrow to achieve high statistical power (≥0.80) to reject the null hypothesis that Nb  = 50 when the true Nb  = 30 and when sampling 50 individuals and 200 SNPs. Similarly, CIs were sufficiently narrow to reject Nb  = 500 when the true Nb  = 400 and when sampling 200 individuals and 5,000 loci. Finally, we present a linear regression method that provides high power to detect a decline in Nb when sampling at least five consecutive cohorts. This study provides guidelines and tools to simulate and estimate Nb for age structured populations (https://github.com/popgengui/agestrucnb/), which should help biologists develop sensitive monitoring programmes for early detection of changes in Nb and population declines.


Genetics, Population , Microsatellite Repeats , Animals , Computer Simulation , Polymorphism, Single Nucleotide , Population Density , Population Dynamics
15.
Conserv Biol ; 35(2): 666-677, 2021 04.
Article En | MEDLINE | ID: mdl-32700770

Augmenting gene flow is a powerful tool for the conservation of small, isolated populations. However, genetic rescue attempts have largely been limited to populations at the brink of extinction, in part due to concerns over negative outcomes (e.g., outbreeding depression). Increasing habitat fragmentation may necessitate more proactive genetic management. Broader application of augmented gene flow will, in turn, require rigorous evaluation to increase confidence and identify pitfalls in this approach. To date, there has been no assessment of best monitoring practices for genetic rescue attempts. We used genomically explicit, individual-based simulations to examine the effectiveness of common approaches (i.e., tests for increases in fitness, migrant ancestry, heterozygosity, and abundance) for determining whether genetic rescue or outbreeding depression occurred. Statistical power to detect the effects of gene flow on fitness was high (≥0.8) when effect sizes were large, a finding consistent with those from previous studies on severely inbred populations. However, smaller effects of gene flow on fitness can appreciably affect persistence probability but current evaluation approaches fail to provide results from which reliable inferences can be drawn. The power of the metrics we examined to evaluate genetic rescue attempts depended on the time since gene flow and whether gene flow was beneficial or deleterious. Encouragingly, the use of multiple metrics provided nonredundant information and improved inference reliability, highlighting the importance of intensive monitoring efforts. Further development of best practices for evaluating genetic rescue attempts will be crucial for a responsible transition to increased use of translocations to decrease extinction risk.


Evaluación de los Resultados de los Intentos de Rescate Genético Resumen El aumento del flujo génico es una herramienta poderosa para la conservación de poblaciones pequeñas y aisladas. Sin embargo, los intentos de rescate genético en su mayoría se han limitado a las poblaciones que se encuentran al borde de la extinción, en parte debido a la preocupación que existe por los resultados negativos (es decir, la depresión exogámica). La creciente fragmentación del hábitat puede requerir un manejo genético más proactivo. La aplicación más extensa del flujo génico aumentado requerirá a su vez una evaluación rigurosa para incrementar la confianza e identificar las dificultades de esta estrategia. A la fecha, no ha habido una evaluación de las mejores prácticas de monitoreo para los intentos de rescate genético. Usamos simulaciones explícitas basadas en individuos para examinar la efectividad de las estrategias comunes (es decir, análisis del incremento en adaptabilidad, ascendencia migratoria, heterocigosidad y abundancia) para determinar si ocurrió el rescate genético o la depresión exogámica. El poder estadístico para detectar los efectos del flujo génico sobre la adaptabilidad fue elevado (≥0.8) cuando el tamaño de los efectos fue grande, un hallazgo consistente con aquellos realizados en estudios previos sobre poblaciones con una endogamia severa. Sin embargo, los efectos menores del flujo génico sobre la adaptabilidad pueden afectar de manera apreciable la probabilidad de persistencia, pero las estrategias actuales de evaluación no proporcionan resultados de los cuales se puedan hacer inferencias confiables. El poder de las medidas que examinamos para evaluar los intentos de rescate genético dependió del tiempo desde que inició el flujo génico y de si el flujo génico fue benéfico o perjudicial. De manera alentadora, el uso de múltiples medidas proporcionó información no redundante y mejoró la confiabilidad de la inferencia, resaltando así la importancia de los esfuerzos intensivos de monitoreo. El futuro desarrollo de mejores prácticas para la evaluación de los intentos de rescate genético será de suma importancia para la transición responsable hacia el mayor uso de reubicaciones para reducir el riesgo de extinción.


Conservation of Natural Resources , Gene Flow , Ecosystem , Genetic Fitness , Genetic Variation , Inbreeding , Reproducibility of Results
16.
J Exp Biol ; 223(Pt 16)2020 08 26.
Article En | MEDLINE | ID: mdl-32616547

Aquatic insects cope with hypoxia and anoxia using a variety of behavioral and physiological responses. Most stoneflies (Plecoptera) occur in highly oxygenated surface waters, but some species live underground in alluvial aquifers containing heterogeneous oxygen concentrations. Aquifer stoneflies appear to be supported by methane-derived food resources, which they may exploit using anoxia-resistant behaviors. We documented dissolved oxygen dynamics and collected stoneflies over 5 years in floodplain wells of the Flathead River, Montana. Hypoxia regularly occurred in two wells, and nymphs of Paraperla frontalis were collected during hypoxic periods. We measured mass-specific metabolic rates (MSMRs) at different oxygen concentrations (12, 8, 6, 4, 2, 0.5 mg l-1, and during recovery) for 111 stonefly nymphs to determine whether aquifer and benthic taxa differed in hypoxia tolerance. Metabolic rates of aquifer taxa were similar across oxygen concentrations spanning 2 to 12 mg l-1 (P>0.437), but the MSMRs of benthic taxa dropped significantly with declining oxygen (P<0.0001; 2.9-times lower at 2 vs. 12 mg l-1). Aquifer taxa tolerated short-term repeated exposure to extreme hypoxia surprisingly well (100% survival), but repeated longer-term (>12 h) exposures resulted in lower survival (38-91%) and lower MSMRs during recovery. Our work suggests that aquifer stoneflies have evolved a remarkable set of behavioral and physiological adaptations that allow them to exploit the unique food resources available in hypoxic zones. These adaptations help to explain how large-bodied consumers might thrive in the underground aquifers of diverse and productive river floodplains.


Groundwater , Oxygen , Animals , Hypoxia , Insecta , Rivers
17.
Ecology ; 101(10): e03127, 2020 10.
Article En | MEDLINE | ID: mdl-32598026

Alluvial aquifers are key components of river floodplains and biodiversity worldwide, but they contain extreme environmental conditions and have limited sources of carbon for sustaining food webs. Despite this, they support abundant populations of aquifer stoneflies that have large proportions of their biomass carbon derived from methane. Methane is typically produced in freshwater ecosystems in anoxic conditions, while stoneflies (Order: Plecoptera) are thought to require highly oxygenated water. The potential importance of methane-derived food resources raises the possibility that stonefly consumers have evolved anoxia-resistant behaviors and physiologies. Here we tested the anoxic and hypoxic responses of 2,445 stonefly individuals in three aquifer species and nine benthic species. We conducted experimental trials in which we reduced oxygen levels, documented locomotor activity, and measured survival rates. Compared to surface-dwelling benthic relatives, stoneflies from the alluvial aquifer on the Flathead River (Montana) performed better in hypoxic and anoxic conditions. Aquifer species sustained the ability to walk after 4-76 h of anoxia vs. 1 h for benthic species and survived on average three times longer than their benthic counterparts. Aquifer stoneflies also sustained aerobic respiration down to much lower levels of ambient oxygen. We show that aquifer taxa have gene sequences for hemocyanin, an oxygen transport respiratory protein, representing a possible mechanism for surviving low oxygen. This remarkable ability to perform well in low-oxygen conditions is unique within the entire order of stoneflies (Plecoptera) and uncommon in other freshwater invertebrates. These results show that aquifer stoneflies can exploit rich carbon resources available in anoxic zones, which may explain their extraordinarily high abundance in gravel-bed floodplain aquifers. These stoneflies are part of a novel food web contributing biodiversity to river floodplains.


Groundwater , Insecta , Animals , Ecosystem , Humans , Hypoxia , Montana
18.
Trends Ecol Evol ; 35(8): 668-678, 2020 08.
Article En | MEDLINE | ID: mdl-32371127

Multiple studies have demonstrated environmental (e)DNA detections of rare and invasive species. However, invasive species managers struggle with using eDNA results because detections might not indicate species presence. We evaluated whether eDNA methods have matured to a point where they can be widely applied to aquatic invasive species management. We have found that eDNA methods meet legal standards for being admissible as evidence in most courts, suggesting eDNA method reliability is not the problem. Rather, we suggest the interface between results and management needs attention since there are few tools for integrating uncertainty into decision-making. Solutions include decision-support trees based on molecular best practices that integrate the temporal and spatial trends in eDNA positives relative to human risk tolerance.


DNA, Environmental , Introduced Species , DNA/genetics , Environmental Monitoring , Reproducibility of Results
19.
G3 (Bethesda) ; 10(6): 1929-1947, 2020 06 01.
Article En | MEDLINE | ID: mdl-32284313

Understanding the genomic basis of adaptative intraspecific phenotypic variation is a central goal in conservation genetics and evolutionary biology. Lake trout (Salvelinus namaycush) are an excellent species for addressing the genetic basis for adaptive variation because they express a striking degree of ecophenotypic variation across their range; however, necessary genomic resources are lacking. Here we utilize recently-developed analytical methods and sequencing technologies to (1) construct a high-density linkage and centromere map for lake trout, (2) identify loci underlying variation in traits that differentiate lake trout ecophenotypes and populations, (3) determine the location of the lake trout sex determination locus, and (4) identify chromosomal homologies between lake trout and other salmonids of varying divergence. The resulting linkage map contains 15,740 single nucleotide polymorphisms (SNPs) mapped to 42 linkage groups, likely representing the 42 lake trout chromosomes. Female and male linkage group lengths ranged from 43.07 to 134.64 centimorgans, and 1.97 to 92.87 centimorgans, respectively. We improved the map by determining coordinates for 41 of 42 centromeres, resulting in a map with 8 metacentric chromosomes and 34 acrocentric or telocentric chromosomes. We use the map to localize the sex determination locus and multiple quantitative trait loci (QTL) associated with intraspecific phenotypic divergence including traits related to growth and body condition, patterns of skin pigmentation, and two composite geomorphometric variables quantifying body shape. Two QTL for the presence of vermiculations and spots mapped with high certainty to an arm of linkage group Sna3, growth related traits mapped to two QTL on linkage groups Sna1 and Sna12, and putative body shape QTL were detected on six separate linkage groups. The sex determination locus was mapped to Sna4 with high confidence. Synteny analysis revealed that lake trout and congener Arctic char (Salvelinus alpinus) are likely differentiated by three or four chromosomal fissions, possibly one chromosomal fusion, and 6 or more large inversions. Combining centromere mapping information with putative inversion coordinates revealed that the majority of detected inversions differentiating lake trout from other salmonids are pericentric and located on acrocentric and telocentric linkage groups. Our results suggest that speciation and adaptive divergence within the genus Salvelinus may have been associated with multiple pericentric inversions occurring primarily on acrocentric and telocentric chromosomes. The linkage map presented here will be a critical resource for advancing conservation oriented genomic research on lake trout and exploring chromosomal evolution within and between salmonid species.


Quantitative Trait Loci , Trout , Animals , Chromosome Mapping , Female , Genetic Linkage , Male , Synteny , Trout/genetics
20.
J Hered ; 111(2): 227-236, 2020 04 02.
Article En | MEDLINE | ID: mdl-32037446

The increasing availability and complexity of next-generation sequencing (NGS) data sets make ongoing training an essential component of conservation and population genetics research. A workshop entitled "ConGen 2018" was recently held to train researchers in conceptual and practical aspects of NGS data production and analysis for conservation and ecological applications. Sixteen instructors provided helpful lectures, discussions, and hands-on exercises regarding how to plan, produce, and analyze data for many important research questions. Lecture topics ranged from understanding probabilistic (e.g., Bayesian) genotype calling to the detection of local adaptation signatures from genomic, transcriptomic, and epigenomic data. We report on progress in addressing central questions of conservation genomics, advances in NGS data analysis, the potential for genomic tools to assess adaptive capacity, and strategies for training the next generation of conservation genomicists.


Conservation of Natural Resources , Genetics, Population/education , Metagenomics/education , Bayes Theorem , Epigenomics , Genotype , High-Throughput Nucleotide Sequencing , Population Density , Transcriptome
...