Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Mol Ther ; 30(5): 1897-1912, 2022 05 04.
Article En | MEDLINE | ID: mdl-34990810

RNA vaccines have demonstrated efficacy against SARS-CoV-2 in humans, and the technology is being leveraged for rapid emergency response. In this report, we assessed immunogenicity and, for the first time, toxicity, biodistribution, and protective efficacy in preclinical models of a two-dose self-amplifying messenger RNA (SAM) vaccine, encoding a prefusion-stabilized spike antigen of SARS-CoV-2 Wuhan-Hu-1 strain and delivered by lipid nanoparticles (LNPs). In mice, one immunization with the SAM vaccine elicited a robust spike-specific antibody response, which was further boosted by a second immunization, and effectively neutralized the matched SARS-CoV-2 Wuhan strain as well as B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta) variants. High frequencies of spike-specific germinal center B, Th0/Th1 CD4, and CD8 T cell responses were observed in mice. Local tolerance, potential systemic toxicity, and biodistribution of the vaccine were characterized in rats. In hamsters, the vaccine candidate was well-tolerated, markedly reduced viral load in the upper and lower airways, and protected animals against disease in a dose-dependent manner, with no evidence of disease enhancement following SARS-CoV-2 challenge. Therefore, the SARS-CoV-2 SAM (LNP) vaccine candidate has a favorable safety profile, elicits robust protective immune responses against multiple SARS-CoV-2 variants, and has been advanced to phase 1 clinical evaluation (NCT04758962).


COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Humans , Liposomes , Mice , Nanoparticles , RNA, Messenger , Rats , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Tissue Distribution
2.
Sci Adv ; 6(32): eaba5068, 2020 08.
Article En | MEDLINE | ID: mdl-32821824

Zika virus (ZIKV) is the cause of a pandemic associated with microcephaly in newborns and Guillain-Barre syndrome in adults. Currently, there are no available treatments or vaccines for ZIKV, and the development of a safe and effective vaccine is a high priority for many global health organizations. We describe the development of ZIKV vaccine candidates using the self-amplifying messenger RNA (SAM) platform technology delivered by cationic nanoemulsion (CNE) that allows bedside mixing and is particularly useful for rapid responses to pandemic outbreaks. Two immunizations of either of the two lead SAM (CNE) vaccine candidates elicited potent neutralizing antibody responses to ZIKV in mice and nonhuman primates. Both SAM (CNE) vaccines protected these animals from ZIKV challenge, with one candidate providing complete protection against ZIKV infection in nonhuman primates. The data provide a preclinical proof of concept that a SAM (CNE) vaccine candidate can rapidly elicit protective immunity against ZIKV.


Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Antibodies, Viral , Mice , RNA, Messenger/genetics , Zika Virus/genetics , Zika Virus Infection/prevention & control
3.
Sci Immunol ; 2(12)2017 Jun 30.
Article En | MEDLINE | ID: mdl-28783665

Human cytomegalovirus (HCMV) is the leading viral cause of birth defects and organ transplant rejection. The HCMV gH/gL/UL128/UL130/UL131A complex (Pentamer) is the main target of humoral responses and thus a key vaccine candidate. We report two structures of Pentamer bound to human neutralizing antibodies, 8I21 and 9I6, at 3.0 and 5.9 Å resolution, respectively. The HCMV gH/gL architecture is similar to that of Epstein-Barr virus (EBV) except for amino-terminal extensions on both subunits. The extension of gL forms a subdomain composed of a three-helix bundle and a ß hairpin that acts as a docking site for UL128/UL130/UL131A. Structural analysis reveals that Pentamer is a flexible molecule, and suggests sites for engineering stabilizing mutations. We also identify immunogenic surfaces important for cellular interactions by epitope mapping and functional assays. These results can guide the development of effective vaccines and immunotherapeutics against HCMV.

4.
Curr Opin Virol ; 23: 23-29, 2017 04.
Article En | MEDLINE | ID: mdl-28285152

Human cytomegalovirus causes disabling congenital disease in neonates and severe complications in immunocompromised individuals, making it a high priority for vaccine development. A prophylactic vaccine needs to outperform natural immunity and a therapeutic vaccine needs to elicit rapid protective antiviral responses. This review highlights the three major approaches undertaken by vaccine developers-virus-derived, protein subunit, and gene-based approaches. Each approach offers a unique promise for a successful vaccine by eliciting either a broad immune response or inducing neutralizing antibody responses order(s) of magnitudes greater than natural immunity. A vaccine-elicited immunity is anticipated to have the robustness and duration sufficient to overcome cytomegalovirus infection.


Cytomegalovirus Infections/prevention & control , Cytomegalovirus Infections/therapy , Cytomegalovirus Vaccines/immunology , Cytomegalovirus Vaccines/isolation & purification , Drug Discovery/trends , Humans
...