Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ambio ; 53(2): 242-256, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37889462

RESUMEN

Coal mining is known for its contributions to climate change, but its impacts on the environment and human lives near mine sites are less widely recognised. This study integrates remote sensing, GIS, stakeholder interviews and extensive review of provincial data and documents to identify patterns of infringement, risk and impact driven by coal mining expansion across East Kalimantan, Indonesia. Specifically, we map and analyse patterns of mining concessions, land clearing, water cover, human settlement, and safety risks, and link them with mining governance and regulatory infractions related to coal mining permits. We show that excessive, improper permit granting and insufficient monitoring and oversight have led to deforestation, widespread overlaps of concessions with settlements, extensive boundary and regulatory violations, lacking reclamation, and numerous deaths. As the world's largest thermal coal exporter, Indonesia's elevated coal infringements, risks, and impacts translate to supply chain, sustainability, and human rights concerns for global coal markets.


Asunto(s)
Minas de Carbón , Humanos , Indonesia , Minería , Cambio Climático , Carbón Mineral/análisis , Monitoreo del Ambiente
2.
Glob Chang Biol ; 26(3): 1414-1431, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31820533

RESUMEN

The identification and quantification of natural carbon (C) sinks is critical to global climate change mitigation efforts. Tropical coastal wetlands are considered important in this context, yet knowledge of their dynamics and quantitative data are still scarce. In order to quantify the C accumulation rate and understand how it is influenced by land use and climate change, a palaeoecological study was conducted in the mangrove-fringed Segara Anakan Lagoon (SAL) in Java, Indonesia. A sediment core was age-dated and analyzed for its pollen and spore, elemental and biogeochemical compositions. The results indicate that environmental dynamics in the SAL and its C accumulation over the past 400 years were controlled mainly by climate oscillations and anthropogenic activities. The interaction of these two factors changed the lagoon's sediment supply and salinity, which consequently altered the organic matter composition and deposition in the lagoon. Four phases with varying climates were identified. While autochthonous mangrove C was a significant contributor to carbon accumulation in SAL sediments throughout all four phases, varying admixtures of terrestrial C from the hinterland also contributed, with natural mixed forest C predominating in the early phases and agriculture soil C predominating in the later phases. In this context, climate-related precipitation changes are an overarching control, as surface water transport through rivers serves as the "delivery agent" for the outcomes of the anthropogenic impact in the catchment area into the lagoon. Amongst mangrove-dominated ecosystems globally, the SAL is one of the most effective C sinks due to high mangrove carbon input in combination with a high allochthonous carbon input from anthropogenically enhanced sediment from the hinterland and increased preservation. Given the substantial C sequestration capacity of the SAL and other mangrove-fringed coastal lagoons, conservation and restoration of these ecosystems is vitally important for climate change mitigation.


Asunto(s)
Carbono , Ecosistema , Secuestro de Carbono , Cambio Climático , Indonesia , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA