Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Parkinsons Dis ; 2024: 5580870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939534

RESUMEN

Background: Postural instability and gait difficulties (PIGD) are a significant cause of falls, mobility loss, and lower quality of life in Parkinson's disease (PD). The connection between PD progression and diminished strength in the lower limbs has been acknowledged. However, the identification of specific muscle groups linked to PIGD and non-PIGD motor features is still unknown. Objective: To explore the relationship between the strength of specific lower limb muscle groups, along with muscle mass, and their associations with PIGD, PIGD subtypes, and non-PIGD motor features in PD. Methods: 95 PD participants underwent detailed motor and non-motor test batteries, including lower limb isometric strength testing and whole-body lean mass assessments. Correlation analysis and univariate and multivariate linear/logistic forward stepwise regression were performed to test associations between PIGD and non-PIGD motor features with normalized value (z-score) of lower limb muscle strength and measures of lean mass. Results: Multivariate regression analysis, adjusted for age, gender, and levodopa equivalent dose, revealed that hip abductor strength was significantly associated with overall PIGD motor severity ratings (p < 0.001), impaired balance (p < 0.001), and non-PIGD Parkinsonian motor features (p < 0.001). Conversely, hip extensor strength was significantly associated with falls, slow walking, and FoG motor features (p=0.016; p=0.003; p=0.020, respectively). Conclusion: We found that lower hip abductor strength was associated with PIGD and non-PIGD motor features. The association between non-PIGD motor features may suggest specific vulnerability of the hip abductors as part of a proposed brain-muscle loop hypothesis in PD. Moreover, lower hip extensor strength correlated with falls, slow walking, and FoG.

2.
Am J Physiol Endocrinol Metab ; 325(5): E466-E479, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729021

RESUMEN

Exercise training modifies lipid metabolism in skeletal muscle, but the effect of exercise training on intramyocellular lipid droplet (LD) abundance, size, and intracellular distribution in adults with obesity remains elusive. This study compared high-intensity interval training (HIIT) with more conventional moderate-intensity continuous training (MICT) on intramyocellular lipid content, as well as LD characteristics (size and number) and abundance within the intramyofibrillar (IMF) and subsarcolemmal (SS) regions of type I and type II skeletal muscle fibers in adults with obesity. Thirty-six adults with obesity [body mass index (BMI) = 33 ± 3 kg/m2] completed 12 wk (4 days/wk) of either HIIT (10 × 1 min, 90% HRmax + 1-min active recovery; n = 19) or MICT (45-min steady-state exercise, 70% HRmax; n = 17), while on a weight-maintaining diet throughout training. Skeletal muscle biopsies were collected from the vastus lateralis before and after training, and intramyocellular lipid content and intracellular LD distribution were measured by immunofluorescence microscopy. Both MICT and HIIT increased total intramyocellular lipid content by more than 50% (P < 0.01), which was attributed to a greater LD number per µm2 in the IMF region of both type I and type II muscle fibers (P < 0.01). Our findings also suggest that LD lipophagy (autophagy-mediated LD degradation) may be transiently upregulated the day after the last exercise training session (P < 0.02 for both MICT and HIIT). In summary, exercise programs for adults with obesity involving either MICT or HIIT increased skeletal muscle LD abundance via a greater number of LDs in the IMF region of the myocyte, thereby providing more lipid in close proximity to the site of energy production during exercise.NEW & NOTEWORTHY In this study, 12 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) enhanced skeletal muscle lipid abundance by increasing lipid droplet number within the intramyofibrillar (IMF) region of muscle. Because the IMF associates with high energy production during muscle contraction, this adaptation may enhance lipid oxidation during exercise. Despite differences in training intensity and energy expenditure between MICT and HIIT, their effects on muscle lipid abundance and metabolism were remarkably similar.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Gotas Lipídicas , Adulto , Humanos , Obesidad/terapia , Ejercicio Físico/fisiología , Metabolismo Energético/fisiología , Lípidos
3.
Transl Psychiatry ; 10(1): 15, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32066680

RESUMEN

Antipsychotic medications are the cornerstone of treatment in schizophrenia spectrum disorders. In first-episode psychosis, the recommended time for an antipsychotic medication trial is up to 16 weeks, but the biological correlates of shorter and longer antipsychotic treatment trials in these cohorts remain largely unknown. We enrolled 29 medication-naive first-episode patients (FEP) and 22 matched healthy controls (HC) in this magnetic resonance spectroscopy (MRS) study, examining the levels of combined glutamate and glutamine (commonly referred to as Glx) in the bilateral medial prefrontal cortex (MPFC) with a PRESS sequence (TR/TE = 2000/80 ms) before initiation of antipsychotic treatment, after 6 and 16 weeks of treatment with risperidone. Data were quantified in 18 HC and 20 FEP at baseline, for 19 HC and 15 FEP at week 6, and for 14 HC and 16 FEP at week 16. At baseline, none of the metabolites differed between groups. Metabolite levels did not change after 6 or 16 weeks of treatment in patients. Our data suggest that metabolite levels do not change after 6 or 16 weeks of treatment with risperidone in FEP. It is possible that our choice of sequence parameters and the limited sample size contributed to negative findings reported here. On the other hand, longer follow-up may be needed to detect treatment-related metabolic changes with MRS. In summary, our study adds to the efforts in better understanding glutamatergic neurometabolism in schizophrenia, especially as it relates to antipsychotic exposure.


Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Esquizofrenia , Antipsicóticos/uso terapéutico , Ácido Glutámico , Humanos , Trastornos Psicóticos/tratamiento farmacológico , Risperidona/uso terapéutico , Esquizofrenia/tratamiento farmacológico
5.
PLoS One ; 9(4): e93257, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24695574

RESUMEN

ATP6V0C is the bafilomycin A1-binding subunit of vacuolar ATPase, an enzyme complex that critically regulates vesicular acidification. We and others have shown previously that bafilomycin A1 regulates cell viability, autophagic flux and metabolism of proteins that accumulate in neurodegenerative disease. To determine the importance of ATP6V0C for autophagy-lysosome pathway function, SH-SY5Y human neuroblastoma cells differentiated to a neuronal phenotype were nucleofected with non-target or ATP6V0C siRNA and following recovery were treated with either vehicle or bafilomycin A1 (0.3-100 nM) for 48 h. ATP6V0C knockdown was validated by quantitative RT-PCR and by a significant decrease in Lysostracker Red staining. ATP6V0C knockdown significantly increased basal levels of microtubule-associated protein light chain 3-II (LC3-II), α-synuclein high molecular weight species and APP C-terminal fragments, and inhibited autophagic flux. Enhanced LC3 and LAMP-1 co-localization following knockdown suggests that autophagic flux was inhibited in part due to lysosomal degradation and not by a block in vesicular fusion. Knockdown of ATP6V0C also sensitized cells to the accumulation of autophagy substrates and a reduction in neurite length following treatment with 1 nM bafilomycin A1, a concentration that did not produce such alterations in non-target control cells. Reduced neurite length and the percentage of propidium iodide-positive dead cells were also significantly greater following treatment with 3 nM bafilomycin A1. Together these results indicate a role for ATP6V0C in maintaining constitutive and stress-induced ALP function, in particular the metabolism of substrates that accumulate in age-related neurodegenerative disease and may contribute to disease pathogenesis.


Asunto(s)
Autofagia/fisiología , Lisosomas/fisiología , Neuroblastoma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Línea Celular Tumoral , Humanos , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroblastoma/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , alfa-Sinucleína/metabolismo
6.
J Neurochem ; 114(4): 1193-204, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20534000

RESUMEN

We have shown previously that the plecomacrolide antibiotics bafilomycin A1 and B1 significantly attenuate cerebellar granule neuron death resulting from agents that disrupt lysosome function. To further characterize bafilomycin-mediated cytoprotection, we examined its ability to attenuate the death of naïve and differentiated neuronal SH-SY5Y human neuroblastoma cells from agents that induce lysosome dysfunction in vitro, and from in vivo dopaminergic neuron death in C. elegans. Low-dose bafilomycin significantly attenuated SH-SY5Y cell death resulting from treatment with chloroquine, hydroxychloroquine amodiaquine and staurosporine. Bafilomycin also attenuated the chloroquine-induced reduction in processing of cathepsin D, the principal lysosomal aspartic acid protease, to its mature 'active' form. Chloroquine induced autophagic vacuole accumulation and inhibited autophagic flux, effects that were attenuated upon treatment with bafilomycin and were associated with a significant decrease in chloroquine-induced accumulation of detergent-insoluble alpha-synuclein oligomers. In addition, bafilomycin significantly and dose-dependently attenuated dopaminergic neuron death in C. elegans resulting from in vivo over-expression of human wild-type alpha-synuclein. Together, our findings suggest that low-dose bafilomycin is cytoprotective in part through its maintenance of the autophagy-lysosome pathway, and underscores its therapeutic potential for treating Parkinson's disease and other neurodegenerative diseases that exhibit disruption of protein degradation pathways and accumulation of toxic protein species.


Asunto(s)
Autofagia/efectos de los fármacos , Citoprotección/efectos de los fármacos , Lisosomas/efectos de los fármacos , Macrólidos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Autofagia/fisiología , Caenorhabditis elegans/efectos de los fármacos , Línea Celular Tumoral , Citoprotección/fisiología , Progresión de la Enfermedad , Humanos , Lisosomas/fisiología , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA