Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Commun ; 15(1): 6949, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138181

RESUMEN

Although γδ T cells are known to participate in immune dysregulation in solid tumors, their relevance to human microsatellite-stable (MSS) colorectal cancer (CRC) is still undefined. Here, using integrated gene expression analysis and T cell receptor sequencing, we characterized γδ T cells in MSS CRC, with a focus on Vδ1 + T cells. We identified Vδ1+ T cells with shared motifs in the third complementarity-determining region of the δ-chain, reflective of antigen recognition. Changes in gene and protein expression levels suggested a dysfunctional effector state of Vδ1+ T cells in MSS CRC, distinct from Vδ1+ T cells in microsatellite-instable (MSI). Interaction analysis highlighted an immunosuppressive role of fibroblasts in the dysregulation of Vδ1+ T cells in MSS CRC via the TIGIT-NECTIN2 axis. Blocking this pathway with a TIGIT antibody partially restored cytotoxicity of the dysfunctional Vδ1 phenotype. These results define an operative pathway in γδ T cells in MSS CRC.


Asunto(s)
Neoplasias Colorrectales , Linfocitos Infiltrantes de Tumor , Inestabilidad de Microsatélites , Receptores de Antígenos de Linfocitos T gamma-delta , Receptores Inmunológicos , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Linfocitos Infiltrantes de Tumor/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Repeticiones de Microsatélite/genética , Regulación Neoplásica de la Expresión Génica , Femenino , Masculino , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología
2.
BMC Biol ; 21(1): 103, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158879

RESUMEN

BACKGROUND: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions. RESULTS: By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging. CONCLUSIONS: Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.


Asunto(s)
Genoma Mitocondrial , Animales , Humanos , Mitocondrias , ADN Mitocondrial/genética , Genoma Humano , Estructura Secundaria de Proteína , ADN de Cadena Simple , Mamíferos
3.
Commun Biol ; 5(1): 600, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725766

RESUMEN

Cellular development is tightly regulated as mature cells with aberrant functions may initiate pathogenic processes. The endometrium is a highly regenerative tissue, shedding and regenerating each month. Endometrial stromal fibroblasts are regenerated each cycle from mesenchymal stem cells and play a pivotal role in endometriosis, a disease characterised by endometrial cells that grow outside the uterus. Why the cells of some women are more capable of developing into endometriosis lesions is not clear. Using isolated, purified and cultured endometrial cells of mesenchymal origin from 19 women with (n = 10) and without (n = 9) endometriosis we analysed the transcriptome of 33,758 individual cells and compared these to clinical characteristics and in vitro growth profiles. We show purified mesenchymal cell cultures include a mix of mesenchymal stem cells and two endometrial stromal fibroblast subtypes with distinct transcriptomic signatures indicative of varied progression through the differentiation processes. The fibroblast subgroup characterised by incomplete differentiation was predominantly (81%) derived from women with endometriosis and exhibited an altered in vitro growth profile. These results uncover an inherent difference in endometrial cells of women with endometriosis and highlight the relevance of cellular differentiation and its potential to contribute to disease susceptibility.


Asunto(s)
Endometriosis , Células Madre Mesenquimatosas , Diferenciación Celular , Endometriosis/genética , Endometrio , Femenino , Fibroblastos/patología , Humanos
4.
iScience ; 24(11): 103326, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34805788

RESUMEN

Langerhans cells (LC) are skin-resident antigen-presenting cells that regulate immune responses to epithelial microorganisms. Human papillomavirus (HPV) infection can promote malignant epithelial transformation. As LCs are considered important for controlling HPV infection, we compared the transcriptome of murine LCs from skin transformed by K14E7 oncoprotein and from healthy skin. We identified transcriptome heterogeneity at the single cell level amongst LCs in normal skin, associated with ontogeny, cell cycle, and maturation. We identified a balanced co-existence of immune-stimulatory and immune-inhibitory LC cell states in normal skin that was significantly disturbed in HPV16 E7-transformed skin. Hyperplastic skin was depleted of immune-stimulatory LCs and enriched for LCs with an immune-inhibitory gene signature, and LC-keratinocyte crosstalk was dysregulated. We identified reduced expression of interleukin (IL)-34, a critical molecule for LC homeostasis. Enrichment of an immune-inhibitory LC gene signature and reduced levels of epithelial IL-34 were also found in human HPV-associated cervical epithelial cancers.

5.
STAR Protoc ; 2(4): 100842, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34585169

RESUMEN

Here, we outline detailed protocols to isolate and profile murine splenic dendritic cells (DCs) through advanced flow cytometry of the myeloid compartment and single-cell transcriptomic profiling with integrated cell surface protein expression through CITE-seq. This protocol provides a general transferrable road map for different tissues and species. For complete details on the use and execution of this protocol, please refer to Lukowski et al. (2021).


Asunto(s)
Perfilación de la Expresión Génica , Células Mieloides , Animales , Citometría de Flujo/métodos , Proteínas de la Membrana , Ratones , Análisis por Micromatrices
6.
iScience ; 24(5): 102402, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33997687

RESUMEN

Conventional dendritic cells (cDCs) are traditionally subdivided into cDC1 and cDC2 lineages. Batf3 is a cDC1-required transcription factor, and we observed that Batf3-/- mice harbor a population of cDC1-like cells co-expressing cDC2-associated surface molecules. Using single-cell RNA sequencing with integrated cell surface protein expression (CITE-seq), we found that Batf3-/- mitotic immature cDC1-like cells showed reduced expression of cDC1 features and increased levels of cDC2 features. In wild type, we also observed a proportion of mature cDC1 cells expressing surface features characteristic to cDC2 and found that overall cDC cell state heterogeneity was mainly driven by developmental stage, proliferation, and maturity. We detected population diversity within Sirpa+ cDC2 cells, including a Cd33+ cell state expressing high levels of Sox4 and lineage-mixed features characteristic to cDC1, cDC2, pDCs, and monocytes. In conclusion, these data suggest that multiple cDC cell states can co-express lineage-overlapping features, revealing a level of previously unappreciated cDC plasticity.

7.
Genome Biol ; 22(1): 76, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33673841

RESUMEN

BACKGROUND: The discovery that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) has provided a foundation for in vitro human disease modelling, drug development and population genetics studies. Gene expression plays a critical role in complex disease risk and therapeutic response. However, while the genetic background of reprogrammed cell lines has been shown to strongly influence gene expression, the effect has not been evaluated at the level of individual cells which would provide significant resolution. By integrating single cell RNA-sequencing (scRNA-seq) and population genetics, we apply a framework in which to evaluate cell type-specific effects of genetic variation on gene expression. RESULTS: Here, we perform scRNA-seq on 64,018 fibroblasts from 79 donors and map expression quantitative trait loci (eQTLs) at the level of individual cell types. We demonstrate that the majority of eQTLs detected in fibroblasts are specific to an individual cell subtype. To address if the allelic effects on gene expression are maintained following cell reprogramming, we generate scRNA-seq data in 19,967 iPSCs from 31 reprogramed donor lines. We again identify highly cell type-specific eQTLs in iPSCs and show that the eQTLs in fibroblasts almost entirely disappear during reprogramming. CONCLUSIONS: This work provides an atlas of how genetic variation influences gene expression across cell subtypes and provides evidence for patterns of genetic architecture that lead to cell type-specific eQTL effects.


Asunto(s)
Reprogramación Celular/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Sitios de Carácter Cuantitativo , RNA-Seq/métodos , Análisis de la Célula Individual , Biología Computacional/métodos , Fibroblastos/citología , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Especificidad de Órganos/genética , Análisis de la Célula Individual/métodos
8.
Immunohorizons ; 5(2): 102-116, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619159

RESUMEN

Regulatory T cells (Tregs) are recruited to nonlymphoid tissues in chronic disease, including cancer, and the tissue environment is held to shape the Treg phenotype diversity. Using single-cell RNA sequencing, we examined the transcriptomic and TCR profile of Tregs recruited to hyperproliferative HPV16 E7-expressing transgenic and control nontransgenic murine skin grafts. Tregs were more abundant in E7 transgenic skin grafts than control grafts, without evidence of E7 specificity. E7 transgenic grafts attracted both Klrg1 + Tregs and Il1r2 + Tregs, which were phenotypically distinct but shared a core gene signature with previously described tumor-infiltrating Tregs. Pseudotime trajectory analysis of Tregs of defined TCR clonotypes predicted phenotypic plasticity within the skin and between the skin and draining lymph nodes. Thus, oncogene-induced hyperproliferative skin expressing a single defined non-self-antigen can attract and induce non-Ag-specific Tregs that acquire distinct regulatory phenotypes characterized by specific effector gene signatures.


Asunto(s)
Presentación de Antígeno/inmunología , Papillomavirus Humano 16/inmunología , Proteínas E7 de Papillomavirus/inmunología , Piel/patología , Linfocitos T Reguladores/inmunología , Animales , Femenino , Papillomavirus Humano 16/genética , Lectinas Tipo C/metabolismo , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Receptores Inmunológicos/metabolismo , Piel/inmunología , Trasplante de Piel
9.
Front Microbiol ; 12: 789042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145494

RESUMEN

Squamous cell carcinoma (SCC) is a common type of skin cancer that typically arises from premalignant precursor lesions named actinic keratoses (AK). Chronic inflammation is a well-known promoter of skin cancer progression. AK and SCC have been associated with an overabundance of the bacterium Staphylococcus aureus (S. aureus). Certain secreted products from S. aureus are known to promote cutaneous pro-inflammatory responses; however, not all S. aureus strains produce these. As inflammation plays a key role in SCC development, we investigated the pro-inflammatory potential and toxin secretion profiles of skin-cancer associated S. aureus. Sterile culture supernatants ("secretomes") of S. aureus clinical strains isolated from AK and SCC were applied to human keratinocytes in vitro. Some S. aureus secretomes induced keratinocytes to overexpress inflammatory mediators that have been linked to skin carcinogenesis, including IL-6, IL-8, and TNFα. A large phenotypic variation between the tested clinical strains was observed. Strains that are highly pro-inflammatory in vitro also caused more pronounced skin inflammation in mice. Proteomic characterization of S. aureus secretomes using mass spectrometry established that specific S. aureus enzymes and cytolytic toxins, including hemolysins, phenol-soluble modulins, and serine proteases, as well as currently uncharacterized proteins, correlate with the pro-inflammatory S. aureus phenotype. This study is the first to describe the toxin secretion profiles of AK and SCC-associated S. aureus, and their potential to induce a pro-inflammatory environment in the skin. Further studies are needed to establish whether these S. aureus products promote SCC development by mediating chronic inflammation.

10.
Thromb Haemost ; 121(4): 433-448, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33302304

RESUMEN

Thrombosis is a leading cause of morbidity and mortality. Fibrinogen, the soluble substrate for fibrin-based clotting, has a central role in haemostasis and thrombosis and its plasma concentration correlates with cardiovascular disease event risk and a prothrombotic state in experimental models. We aimed to identify chemical entities capable of changing fibrinogen production and test their impact on experimental thrombosis. A total of 1,280 bioactive compounds were screened for their ability to alter fibrinogen production by hepatocyte-derived cancer cells and a selected panel was tested in zebrafish larvae. Anthralin and all-trans retinoic acid (RA) were identified as fibrinogen-lowering and fibrinogen-increasing moieties, respectively. In zebrafish larvae, anthralin prolonged laser-induced venous- occlusion times and reduced thrombocyte accumulation at injury sites. RA had opposite effects. Treatment with RA, a nuclear receptor ligand, increased fibrinogen mRNA levels. Using an antisense morpholino oligonucleotide to deplete zebrafish fibrinogen, we correlated a shortening of laser-induced venous thrombosis times with RA treatment and fibrinogen protein levels. Anthralin had little effect on fibrinogen mRNA in zebrafish larvae, despite leading to lower detectable fibrinogen. Therefore, we made a proteomic scan of anthralin-treated cells and larvae. A reduced representation of proteins linked to the canonical secretory pathway was detected, suggesting that anthralin affects protein secretion. In summary, we found that chemical modulation of fibrinogen levels correlates with measured effects on experimental venous thrombosis and could be investigated as a therapeutic avenue for thrombosis prevention.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Fibrinógeno/metabolismo , Fibrinolíticos/farmacología , Trombosis de la Vena/tratamiento farmacológico , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Antralina/farmacología , Modelos Animales de Enfermedad , Fibrinógeno/genética , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Morfolinos/farmacología , Mutación , Oligonucleótidos Antisentido/farmacología , Proteómica , Bibliotecas de Moléculas Pequeñas , Tretinoina/farmacología , Trombosis de la Vena/genética , Trombosis de la Vena/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-32670895

RESUMEN

Human papillomavirus (HPV) infection is associated with a range of malignancies that affect anogenital and oropharyngeal sites. α-HPVs dominantly infect basal epithelial cells of mucosal tissues, where they dysregulate cell division and local immunity. The cervix is one of the mucosal sites most susceptible to HPV infections. It consists of anatomically diverse regions, and the majority of cervical intraepithelial neoplasia and cancers arise within the cervical squamo-columnar junction where undifferentiated basal progenitor cells with stem cell properties are found. The cancer stem cell theory particularly associates tumorigenesis, invasion, dissemination, and metastasis with cancer cells exhibiting stem cell properties. In this perspective, we discuss evidence of a cervical cancer stem cell niche and explore the association of stemness related genes with 5-year survival using a publicly available transcriptomic dataset of a cervical cancer cohort. We report that poor prognosis in this cohort correlates with overexpression of a subset of stemness pathway genes, a majority of which regulate the central Focal Adhesion pathway, and are also found to be enriched in the HPV infection pathway. These observations support therapeutic targeting of stemness genes overexpressed by mucosal cells infected with high-risk HPVs.


Asunto(s)
Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , Papillomaviridae/genética
12.
Hum Reprod ; 35(2): 377-393, 2020 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-32103259

RESUMEN

STUDY QUESTION: Are genetic effects on endometrial gene expression tissue specific and/or associated with reproductive traits and diseases? SUMMARY ANSWER: Analyses of RNA-sequence data and individual genotype data from the endometrium identified novel and disease associated, genetic mechanisms regulating gene expression in the endometrium and showed evidence that these mechanisms are shared across biologically similar tissues. WHAT IS KNOWN ALREADY: The endometrium is a complex tissue vital for female reproduction and is a hypothesized source of cells initiating endometriosis. Understanding genetic regulation specific to, and shared between, tissue types can aid the identification of genes involved in complex genetic diseases. STUDY DESIGN, SIZE, DURATION: RNA-sequence and genotype data from 206 individuals was analysed and results were compared with large publicly available datasets. PARTICIPANTS/MATERIALS, SETTING, METHODS: RNA-sequencing and genotype data from 206 endometrial samples was used to identify the influence of genetic variants on gene expression, via expression quantitative trait loci (eQTL) analysis and to compare these endometrial eQTLs with those in other tissues. To investigate the association between endometrial gene expression regulation and reproductive traits and diseases, we conducted a tissue enrichment analysis, transcriptome-wide association study (TWAS) and summary data-based Mendelian randomisation (SMR) analyses. Transcriptomic data was used to test differential gene expression between women with and without endometriosis. MAIN RESULTS AND THE ROLE OF CHANCE: A tissue enrichment analysis with endometriosis genome-wide association study summary statistics showed that genes surrounding endometriosis risk loci were significantly enriched in reproductive tissues. A total of 444 sentinel cis-eQTLs (P < 2.57 × 10-9) and 30 trans-eQTLs (P < 4.65 × 10-13) were detected, including 327 novel cis-eQTLs in endometrium. A large proportion (85%) of endometrial eQTLs are present in other tissues. Genetic effects on endometrial gene expression were highly correlated with the genetic effects on reproductive (e.g. uterus, ovary) and digestive tissues (e.g. salivary gland, stomach), supporting a shared genetic regulation of gene expression in biologically similar tissues. The TWAS analysis indicated that gene expression at 39 loci is associated with endometriosis, including five known endometriosis risk loci. SMR analyses identified potential target genes pleiotropically or causally associated with reproductive traits and diseases including endometriosis. However, without taking account of genetic variants, a direct comparison between women with and without endometriosis showed no significant difference in endometrial gene expression. LARGE SCALE DATA: The eQTL dataset generated in this study is available at http://reproductivegenomics.com.au/shiny/endo_eqtl_rna/. Additional datasets supporting the conclusions of this article are included within the article and the supplementary information files, or are available on reasonable request. LIMITATIONS, REASONS FOR CAUTION: Data are derived from fresh tissue samples and expression levels are an average of expression from different cell types within the endometrium. Subtle cell-specifc expression changes may not be detected and differences in cell composition between samples and across the menstrual cycle will contribute to sample variability. Power to detect tissue specific eQTLs and differences between women with and without endometriosis was limited by the sample size in this study. The statistical approaches used in this study identify the likely gene targets for specific genetic risk factors, but not the functional mechanism by which changes in gene expression may influence disease risk. WIDER IMPLICATIONS OF THE FINDINGS: Our results identify novel genetic variants that regulate gene expression in endometrium and the majority of these are shared across tissues. This allows analysis with large publicly available datasets to identify targets for female reproductive traits and diseases. Much larger studies will be required to identify genetic regulation of gene expression that will be specific to endometrium. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Health and Medical Research Council (NHMRC) under project grants GNT1026033, GNT1049472, GNT1046880, GNT1050208, GNT1105321, GNT1083405 and GNT1107258. G.W.M is supported by a NHMRC Fellowship (GNT1078399). J.Y is supported by an ARC Fellowship (FT180100186). There are no competing interests.


Asunto(s)
Endometriosis , Estudio de Asociación del Genoma Completo , Endometriosis/genética , Endometrio , Femenino , Humanos , Ciclo Menstrual , Sitios de Carácter Cuantitativo
13.
J Exp Med ; 217(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31917836

RESUMEN

The ontogeny of airway macrophages (AMs) in human lung and their contribution to disease are poorly mapped out. In mice, aging is associated with an increasing proportion of peripherally, as opposed to perinatally derived AMs. We sought to understand AM ontogeny in human lung during healthy aging and after transplant. We characterized monocyte/macrophage populations from the peripheral blood and airways of healthy volunteers across infancy/childhood (2-12 yr), maturity (20-50 yr), and older adulthood (>50 yr). Single-cell RNA sequencing (scRNA-seq) was performed on airway inflammatory cells isolated from sex-mismatched lung transplant recipients. During healthy aging, the proportions of blood bronchoalveolar lavage (BAL) classical monocytes peak in adulthood and decline in older adults. scRNA-seq of BAL cells from lung transplant recipients indicates that after transplant, the majority of AMs are recipient derived. These data show that during aging, the peripheral monocyte phenotype is consistent with that found in the airways and, furthermore, that the majority of human AMs after transplant are derived from circulating monocytes.


Asunto(s)
Envejecimiento Saludable/fisiología , Pulmón/fisiología , Macrófagos Alveolares/fisiología , Monocitos/fisiología , Adulto , Animales , Lavado Broncoalveolar/métodos , Niño , Preescolar , Femenino , Humanos , Leucocitos Mononucleares/fisiología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
14.
NAR Genom Bioinform ; 2(2): lqaa034, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33575589

RESUMEN

The libraries generated by high-throughput single cell RNA-sequencing (scRNA-seq) platforms such as the Chromium from 10× Genomics require considerable amounts of sequencing, typically due to the large number of cells. The ability to use these data to address biological questions is directly impacted by the quality of the sequence data. Here we have compared the performance of the Illumina NextSeq 500 and NovaSeq 6000 against the BGI MGISEQ-2000 platform using identical Single Cell 3' libraries consisting of over 70 000 cells generated on the 10× Genomics Chromium platform. Our results demonstrate a highly comparable performance between the NovaSeq 6000 and MGISEQ-2000 in sequencing quality, and the detection of genes, cell barcodes, Unique Molecular Identifiers. The performance of the NextSeq 500 was also similarly comparable to the MGISEQ-2000 based on the same metrics. Data generated by both sequencing platforms yielded similar analytical outcomes for general single-cell analysis. The performance of the NextSeq 500 and MGISEQ-2000 were also comparable for the deconvolution of multiplexed cell pools via variant calling, and detection of guide RNA (gRNA) from a pooled CRISPR single-cell screen. Our study provides a benchmark for high-capacity sequencing platforms applied to high-throughput scRNA-seq libraries.

15.
Gigascience ; 8(8)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31505654

RESUMEN

BACKGROUND: Recent developments in single-cell RNA sequencing (scRNA-seq) platforms have vastly increased the number of cells typically assayed in an experiment. Analysis of scRNA-seq data is multidisciplinary in nature, requiring careful consideration of the application of statistical methods with respect to the underlying biology. Few analysis packages exist that are at once robust, are computationally fast, and allow flexible integration with other bioinformatics tools and methods. FINDINGS: ascend is an R package comprising tools designed to simplify and streamline the preliminary analysis of scRNA-seq data, while addressing the statistical challenges of scRNA-seq analysis and enabling flexible integration with genomics packages and native R functions, including fast parallel computation and efficient memory management. The package incorporates both novel and established methods to provide a framework to perform cell and gene filtering, quality control, normalization, dimension reduction, clustering, differential expression, and a wide range of visualization functions. CONCLUSIONS: ascend is designed to work with scRNA-seq data generated by any high-throughput platform and includes functions to convert data objects between software packages. The ascend workflow is simple and interactive, as well as suitable for implementation by a broad range of users, including those with little programming experience.


Asunto(s)
Biología Computacional/métodos , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Programas Informáticos , Genómica/métodos , Control de Calidad , Flujo de Trabajo
16.
Virology ; 537: 14-19, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31425970

RESUMEN

Human Papillomavirus infection is highly prevalent worldwide. While most types of HPV cause benign warts, some high-risk types are known to cause cervical cancer, as well as cancer of the oral cavity and head and neck. Persistent cutaneous HPV infection can be particularly problematic in patients with chronic immunosuppression, for example following organ transplantation. Due to unknown mechanisms, these patients may develop numerous warts, as well as present with a dramatically increased skin cancer prevalence. Despite an association between HPV persistence in the epidermis and excessive wart or squamous cancer development, the molecular mechanisms linking immunosuppression, HPV expression and excessive epidermal proliferation have not been determined, largely due to low-sensitivity methodology to capture rare viral transcription events. Here, we use single-cell RNA sequencing to profile HPV-positive skin lesions from an immunosuppressed patient that were found to express the alphapapillomavirus HPV78 in basal keratinocytes, suprabasal keratinocytes and hair follicle stem cells. This method can be applied to detect and investigate HPV transcripts in cutaneous lesions, allowing mechanistic links between immunosuppression-induced HPV life cycle and epidermal hyperproliferation to be uncovered.


Asunto(s)
Epidermis/virología , Perfilación de la Expresión Génica , Papillomaviridae/genética , Infecciones por Papillomavirus/virología , Análisis de la Célula Individual , Transcripción Genética , Verrugas/virología , Adulto , Humanos , Huésped Inmunocomprometido , Papillomaviridae/crecimiento & desarrollo , Infecciones por Papillomavirus/patología , Análisis de Secuencia de ARN , Verrugas/patología
17.
EMBO J ; 38(18): e100811, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31436334

RESUMEN

The retina is a specialized neural tissue that senses light and initiates image processing. Although the functional organization of specific retina cells has been well studied, the molecular profile of many cell types remains unclear in humans. To comprehensively profile the human retina, we performed single-cell RNA sequencing on 20,009 cells from three donors and compiled a reference transcriptome atlas. Using unsupervised clustering analysis, we identified 18 transcriptionally distinct cell populations representing all known neural retinal cells: rod photoreceptors, cone photoreceptors, Müller glia, bipolar cells, amacrine cells, retinal ganglion cells, horizontal cells, astrocytes, and microglia. Our data captured molecular profiles for healthy and putative early degenerating rod photoreceptors, and revealed the loss of MALAT1 expression with longer post-mortem time, which potentially suggested a novel role of MALAT1 in rod photoreceptor degeneration. We have demonstrated the use of this retina transcriptome atlas to benchmark pluripotent stem cell-derived cone photoreceptors and an adult Müller glia cell line. This work provides an important reference with unprecedented insights into the transcriptional landscape of human retinal cells, which is fundamental to understanding retinal biology and disease.


Asunto(s)
Degeneración Nerviosa/genética , ARN Largo no Codificante/genética , Retina/química , Análisis de la Célula Individual/métodos , Transcriptoma , Autopsia , Análisis por Conglomerados , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Humanos , Especificidad de Órganos , Células Fotorreceptoras Retinianas Bastones/química , Análisis de Secuencia de ARN , Aprendizaje Automático no Supervisado
18.
Cell Rep ; 27(9): 2748-2758.e3, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141696

RESUMEN

The cellular and molecular profiles that govern the endothelial heterogeneity of the circulatory system have yet to be elucidated. Using a data-driven approach to study the endothelial compartment via single-cell RNA sequencing, we characterized cell subpopulations within and assigned them to a defined endothelial hierarchy. We show that two transcriptionally distinct endothelial populations exist within the aorta and, using two independent trajectory analysis methods, confirm that they represent transitioning cells rather than discrete cell types. Gene co-expression analysis revealed crucial regulatory networks underlying each population, including significant metabolic gene networks in progenitor cells. Using mitochondrial activity assays and phenotyping, we confirm that endovascular progenitors display higher mitochondrial content compared to differentiated endothelial cells. The identities of these populations were further validated against bulk RNA sequencing (RNA-seq) data obtained from normal and tumor-derived vasculature. Our findings validate the heterogeneity of the aortic endothelium and previously suggested hierarchy between progenitor and differentiated cells.


Asunto(s)
Aorta/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula , Endotelio Vascular/metabolismo , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Aorta/citología , Endotelio Vascular/citología , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Ratones Endogámicos C57BL , Células Madre/citología , Células Madre/metabolismo
19.
Clin Epigenetics ; 11(1): 49, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30871624

RESUMEN

BACKGROUND: Major challenges in understanding the functional consequences of genetic risk factors for human disease are which tissues and cell types are affected and the limited availability of suitable tissue. The aim of this study was to evaluate tissue-specific genotype-epigenetic characteristics in DNA samples from both endometrium and blood collected from women at different stages of the menstrual cycle and relate results to genetic risk factors for reproductive traits and diseases. RESULTS: We analysed DNA methylation (DNAm) data from endometrium and blood samples from 66 European women. Methylation profiles were compared between stages of the menstrual cycle, and changes in methylation overlaid with changes in transcription and genotypes. We observed large changes in methylation (27,262 DNAm probes) across the menstrual cycle in endometrium that were not observed in blood. Individual genotype data was tested for association with methylation at 443,016 and 443,101 DNAm probes in endometrium and blood respectively to identify methylation quantitative trait loci (mQTLs). A total of 4546 sentinel cis-mQTLs (P < 1.13 × 10-10) and 434 sentinel trans-mQTLs (P < 2.29 × 10-12) were detected in endometrium and 6615 sentinel cis-mQTLs (P < 1.13 × 10-10) and 590 sentinel trans-mQTLs (P < 2.29 × 10-12) were detected in blood. Following secondary analyses, conducted to test for overlap between mQTLs in the two tissues, we found that 62% of endometrial cis-mQTLs were also observed in blood and the genetic effects between tissues were highly correlated. A number of mQTL SNPs were associated with reproductive traits and diseases, including one mQTL located in a known risk region for endometriosis (near GREB1). CONCLUSIONS: We report novel findings characterising genetic regulation of methylation in endometrium and the association of endometrial mQTLs with endometriosis risk and other reproductive traits and diseases. The high correlation of genetic effects between tissues highlights the potential to exploit the power of large mQTL datasets in endometrial research and identify target genes for functional studies. However, tissue-specific methylation profiles and genetic effects also highlight the importance of also using disease-relevant tissues when investigating molecular mechanisms of disease risk.


Asunto(s)
Metilación de ADN , Endometrio/química , Ciclo Menstrual/genética , Sitios de Carácter Cuantitativo , Adulto , Análisis Químico de la Sangre , Endometriosis/genética , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Ciclo Menstrual/sangre , Especificidad de Órganos , Polimorfismo de Nucleótido Simple , Población Blanca/genética
20.
Respirology ; 24(1): 29-36, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30264869

RESUMEN

The past four decades have yielded advances in molecular biology allowing detailed characterization of the cellular genome and the transcriptome: the complete set of RNA species transcribed by a cell or tissue. Through transcriptomics and next-generation sequencing, we can now attain an unprecedented level of detail in understanding cellular phenotypes through examining the genes expressed in specific physiological and pathological states. In this review, we provide an overview of transcriptomics and RNA-sequencing in the analysis of whole tissue and single cells. We describe the techniques and pitfalls involved in the isolation and sequencing of single cells, and what additional benefits this application can provide. Finally, we look to how these technologies are being applied in pulmonary research, and how they may translate in the near future into clinical practice.


Asunto(s)
Investigación Biomédica , Enfermedades Pulmonares , Transcriptoma/fisiología , Investigación Biomédica Traslacional , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Tecnología Biomédica , Humanos , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/terapia , Análisis de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA