Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731823

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Drug Carriers , Lamotrigine , Molecularly Imprinted Polymers , Lamotrigine/chemistry , Drug Carriers/chemistry , Molecularly Imprinted Polymers/chemistry , Molecularly Imprinted Polymers/chemical synthesis , Molecular Imprinting/methods , Spectroscopy, Fourier Transform Infrared , Drug Liberation , X-Ray Diffraction , Adsorption , Hydrogen-Ion Concentration
2.
Int J Biol Macromol ; 264(Pt 2): 130645, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460633

Hyaluronic acid (HA), a biodegradable, biocompatible and non-immunogenic therapeutic polymer is a key component of the cartilage extracellular matrix (ECM) and has been widely used to manage two major types of arthritis, osteoarthritis (OA) and rheumatoid arthritis (RA). OA joints are characterized by lower concentrations of depolymerized (low molecular weight) HA, resulting in reduced physiological viscoelasticity, while in RA, the associated immune cells are over-expressed with various cell surface receptors such as CD44. Due to HA's inherent viscoelastic property and its ability to target CD44, there has been a surge of interest in developing HA-based systems to deliver various bioactives (drugs and biologics) and manage arthritis. Considering therapeutic benefits of HA in arthritis management and potential advantages of novel delivery systems, bioactive delivery through HA-based systems is beginning to display improved outcomes over bioactive only treatment. The benefits include enhanced bioactive uptake due to receptor-mediated targeting, prolonged retention of bioactives in the synovium, reduced expressions of proinflammatory mediators, enhanced cartilage regeneration, reduced drug toxicity due to sustained release, and improved and cost-effective treatment. This review provides an underlying rationale to prepare and use HA-based bioactive delivery systems for arthritis applications. With special emphasis given to preclinical/clinical results, this article reviews various bioactive-loaded HA-based particulate carriers (organic and inorganic), gels, scaffolds and polymer-drug conjugates that have been reported to treat and manage OA and RA. Furthermore, the review identifies several key challenges and provides valuable suggestions to address them. Various developments, strategies and suggestions described in this review may guide the formulation scientists to optimize HA-based bioactive delivery systems as an effective approach to manage and treat arthritis effectively.


Arthritis, Rheumatoid , Osteoarthritis , Humans , Hyaluronic Acid/therapeutic use , Hyaluronic Acid/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Arthritis, Rheumatoid/metabolism , Pharmaceutical Preparations , Polymers/therapeutic use
3.
Polymers (Basel) ; 15(14)2023 Jul 24.
Article En | MEDLINE | ID: mdl-37514538

The aim of this study was to create molecularly imprinted polymers (MIPs) that are specific towards 4-borono-L-phenylalanine (BPA) to serve as boron compound carriers. The honeycomb-like MIPs were characterized in the matter of adsorption properties, morphology, structure, and cytotoxicity towards A549 and V79-4 cell lines. The honeycomb-like MIP composed from methacrylic acid and ethylene glycol dimethacrylate was characterized by a binding capacity of 330.4 ± 4.6 ng g-1 and an imprinting factor of 2.04, and its ordered, porous morphology was confirmed with scanning electron microscopy. The theoretical analysis revealed that the coexistence of different anionic forms of the analyte in basic solution might lower the binding capacity of the MIP towards BPA. The release profiles from the model phosphate buffer saline showed that only 0 to 4.81% of BPA was released from the MIP within the time frame of two hours, furthermore, the obtained material was considered non-cytotoxic towards tested cell lines. The results prove that MIPs can be considered as effective BPA delivery systems for biomedical applications and should be investigated in further studies.

4.
Pharmaceutics ; 15(6)2023 Jun 03.
Article En | MEDLINE | ID: mdl-37376096

Simultaneous diagnostics and targeted therapy provide a theranostic approach, an instrument of personalized medicine-one of the most-promising trends in current medicine. Except for the appropriate drug used during the treatment, a strong focus is put on the development of effective drug carriers. Among the various materials applied in the production of drug carriers, molecularly imprinted polymers (MIPs) are one of the candidates with great potential for use in theranostics. MIP properties such as chemical and thermal stability, together with capability to integrate with other materials are important in the case of diagnostics and therapy. Moreover, the MIP specificity, which is important for targeted drug delivery and bioimaging of particular cells, is a result of the preparation process, conducted in the presence of the template molecule, which often is the same as the target compound. This review focused on the application of MIPs in theranostics. As a an introduction, the current trends in theranostics are described prior to the characterization of the concept of molecular imprinting technology. Next, a detailed discussion of the construction strategies of MIPs for diagnostics and therapy according to targeting and theranostic approaches is provided. Finally, frontiers and future prospects are presented, stating the direction for further development of this class of materials.

5.
Nanomaterials (Basel) ; 13(2)2023 Jan 06.
Article En | MEDLINE | ID: mdl-36677999

Molecular imprinting technology is a well-known strategy to synthesize materials with a predetermined specificity. For fifty years, the "classical" approach assumed the creation of "memory sites" in the organic polymer matrix by a template molecule that interacts with the functional monomer prior to the polymerization and template removal. However, the phenomenon of a material's "memory" provided by the "footprint" of the chemical entity was first observed on silica-based materials nearly a century ago. Through the years, molecular imprinting technology has attracted the attention of many scientists. Different forms of molecularly imprinted materials, even on the nanoscale, were elaborated, predominantly using organic polymers to induce the "memory". This field has expanded quickly in recent years, providing versatile tools for the separation or detection of numerous chemical compounds or even macromolecules. In this review, we would like to emphasize the role of the molecular imprinting process in the formation of highly specific siloxane-based nanomaterials. The distinct chemistry of siloxanes provides an opportunity for the facile functionalization of the surfaces of nanomaterials, enabling us to introduce additional properties and providing a way for vast applications such as detectors or separators. It also allows for catalyzing chemical reactions providing microreactors to facilitate organic synthesis. Finally, it determines the properties of siloxanes such as biocompatibility, which opens the way to applications in drug delivery and nanomedicine. Thus, a brief outlook on the chemistry of siloxanes prior to the discussion of the current state of the art of siloxane-based imprinted nanomaterials will be provided. Those aspects will be presented in the context of practical applications in various areas of chemistry and medicine. Finally, a brief outlook of future perspectives for the field will be pointed out.

7.
Polymers (Basel) ; 14(13)2022 Jul 04.
Article En | MEDLINE | ID: mdl-35808783

The paper describes the formation of six aromatic N-(2-arylethyl)-2-methylprop-2-enamides with various substituents in benzene ring, viz., 4-F, 4-Cl, 2,4-Cl2, 4-Br, 4-OMe, and 3,4-(OMe)2 from 2-arylethylamines and methacryloyl chloride in ethylene dichloride with high yields (46-94%). The structure of the compounds was confirmed by 1H NMR, 13C NMR, IR, and HR-MS. Those compounds were obtained to serve as functionalized templates for the fabrication of molecularly imprinted polymers followed by the hydrolysis of an amide linkage. In an exemplary experiment, the imprinted polymer was produced from N-(2-(4-bromophenyl)ethyl)-2-methylprop-2-enamide and divinylbenzene, acting as cross-linker. The hydrolysis of 2-(4-bromophenyl)ethyl residue proceeded and the characterization of material including SEM, EDS, 13C CP MAS NMR, and BET on various steps of preparation was carried out. The adsorption studies proved that there was a high affinity towards the target biomolecules tyramine and L-norepinephrine, with imprinting factors equal to 2.47 and 2.50, respectively, when compared to non-imprinted polymer synthesized from methacrylic acid and divinylbenzene only.

8.
Int J Mol Sci ; 22(17)2021 Sep 03.
Article En | MEDLINE | ID: mdl-34502468

In this paper, magnetic molecularly imprinted nano-conjugates were synthesized to serve as selective sorbents in a model study of tyramine determination in craft beer samples. The molecularly imprinted sorbent was characterized in terms of morphology, structure, and composition. The magnetic dispersive solid phase extraction protocol was developed and combined with liquid chromatography coupled with mass spectrometry to determine tyramine. Ten samples of craft beers were analyzed using a validated method, revealing tyramine concentrations in the range between 0.303 and 126.5 mg L-1. Tyramine limits of detection and quantification were 0.033 mg L-1 and 0.075 mg L-1, respectively. Therefore, the fabricated molecularly imprinted magnetic nano-conjugates with a fast magnetic responsivity and desirable adsorption performance could be an effective tool for monitoring tyramine levels in beverages.


Beer/analysis , Magnetic Phenomena , Molecular Imprinting , Nanoconjugates/chemistry , Tyramine/analysis
9.
Materials (Basel) ; 14(8)2021 Apr 08.
Article En | MEDLINE | ID: mdl-33917896

In the last 10 years, we have witnessed an extensive development of instrumental techniques in analytical methods for determination of various molecules and ions at very low concentrations. Nevertheless, the presence of interfering components of complex samples hampered the applicability of new analytical strategies. Thus, additional sample pre-treatment steps were proposed to overcome the problem. Solid sorbents were used for clean-up samples but insufficient selectivity of commercial materials limited their utility. Here, the application of molecularly imprinted polymers (MIPs) or ion-imprinted polymers (IIPs) in the separation processes have recently attracted attention due to their many advantages, such as high selectivity, robustness, and low costs of the fabrication process. Bulk or monoliths, microspheres and core-shell materials, magnetically susceptible and stir-bar imprinted materials are applicable to different modes of solid-phase extraction to determine target analytes and ions in a very complex environment such as blood, urine, soil, or food. The capability to perform a specific separation of enantiomers is a substantial advantage in clinical analysis. The ion-imprinted sorbents gained interest in trace analysis of pollutants in environmental samples. In this review, the current synthetic approaches for the preparation of MIPs and IIPs are comprehensively discussed together with a detailed characterization of respective materials. Furthermore, the use of sorbents in environmental, food, and biomedical analyses will be emphasized to point out current limits and highlight the future prospects for further development in the field.

10.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article En | MEDLINE | ID: mdl-33915912

The aim of this study was to develop magnetic molecularly imprinted nano-conjugate sorbent for effective dispersive solid phase extraction of antazoline (ANT) and its metabolite, hydroxyantazoline (ANT-OH) in analytical method employing liquid chromatography coupled with mass spectrometry method. The core-shell material was characterized in terms of adsorption properties, morphology and structure. The heterogeneous population of adsorption sites towards ANT-OH was characterized by two Kd and two Bmax values: Kd (1) = 0.319 µg L-1 and Bmax (1) = 0.240 µg g-1, and Kd (2) = 34.6 µg L-1 and Bmax (2) = 5.82 µg g-1. The elemental composition of magnetic sorbent was as follows: 17.55, 37.33, 9.14, 34.94 wt% for Si, C, Fe and O, respectively. The extraction protocol was optimized, and the obtained results were explained using theoretical analysis. Finally, the analytical method was validated prior to application to pharmacokinetic study in which the ANT was administrated intravenously to three healthy volunteers. The results prove that the novel sorbent could be useful in extraction of ANT and ANT-OH from human plasma and that the analytical strategy could be a versatile tool to explain a potential and pharmacological activity of ANT and ANT-OH.


Antazoline/blood , Molecularly Imprinted Polymers/chemistry , Nanoconjugates/chemistry , Adsorption , Adult , Antazoline/pharmacokinetics , Healthy Volunteers , Humans , Male , Solid Phase Extraction
11.
J Agric Food Chem ; 68(49): 14502-14512, 2020 Dec 09.
Article En | MEDLINE | ID: mdl-33227193

In this paper, we developed and validated a new analytical method to determine the pharmacokinetic profile of hordenine in plasma samples of human volunteers after oral administration of hordenine-rich dietary supplements. For this purpose, a magnetic molecularly imprinted sorbent was fabricated and characterized. The application of a magnetic susceptible material facilitates pretreatment step while working with a highly complex sample, reducing time and costs. An optimized, fast, and reliable separation step was combined with liquid chromatography tandem mass spectrometry, providing an analytical method for analysis of hordenine in human plasma after dietary supplement intake. The method was validated (lower limit of quantification of 0.05 µg/L), enabling the pharmacokinetic profile of hordenine to be determined. The highest concentration of hordenine was noted after 65 ± 14 min, reaching the value of 16.4 ± 7.8 µg/L. The average t1/2 was 54 ± 19 min. The apparent volume of distribution was 6000 ± 2600 L (66 ± 24 L/kg when adjusted for weight).


Chromatography, High Pressure Liquid/methods , Nanoconjugates/chemistry , Tandem Mass Spectrometry/methods , Tyramine/analogs & derivatives , Administration, Oral , Humans , Limit of Detection , Magnetics , Plasma/chemistry , Preliminary Data , Tyramine/administration & dosage , Tyramine/blood , Tyramine/pharmacokinetics
12.
J Chromatogr A ; 1613: 460677, 2020 Feb 22.
Article En | MEDLINE | ID: mdl-31727352

The objective of this paper was to extend comprehensive theoretical and experimental investigations at the molecular level to identify factors responsible for the high selectivity of imprinted sorbents. This knowledge was utilized in a new analytical strategy devoted to the analysis of hordenine in human urine after beer consumption. Among the various polymeric compositions tested, the most effective material was built up from methacrylic acid and ethylene glycol dimethacrylate (MIP1), showing a satisfactory binding capacity (4.44 ±â€¯0.15 µmol g-1) and high specificity towards hordenine (AF = 5.90). The comprehensive analyses of porosity data and surface measurements revealed differences between imprinted polymers. The characterization of binding sites of MIP1 revealed a heterogeneous population with two values of Kd (2.75 and 370 µmol L-1) and two values of Bmax (1.82 and 99 µmol g-1) for higher and lower affinity respectively. The extensive theoretical analyses of interactions between various analytes and the MIP model cavity showed the highest binding energy for hordenine (ΔEB1 = -175.17 kcal mol-1). The method was validated for selectivity, lowest limit of quantification, calibration curve performance, precision, accuracy, matrix effect, carry-over and stability in urine. Extracts were prepared according to guidelines of the European Medicines Agency. The validation criteria were fulfilled, and the method was satisfactorily applied to urine samples collected prior to, and 2 h after, consumption of 2 L of beer, revealing the presence of hordenine at the mean level of 129 ±â€¯27 ng mL-1. Additionally, ability of the sorbent to purify the urine sample was assessed using flow injection analysis tandem mass spectrometry, for comparison with other extraction techniques.


Tyramine/analogs & derivatives , Urinalysis/methods , Beer , Humans , Methacrylates/chemistry , Polymers/chemistry , Tyramine/analysis , Tyramine/isolation & purification
13.
Nanoscale ; 11(25): 12030-12074, 2019 Jul 07.
Article En | MEDLINE | ID: mdl-31204762

Quantum dots (QDs) are attractive semiconductor fluorescent nanomaterials with remarkable optical and electrical properties. The broad absorption spectra and high stability of QD transducers are advantageous for sensing and bioimaging. Molecular imprinting is a technique for manufacturing synthetic polymeric materials with a high recognition ability towards a target analyte. The high selectivity of the molecularly imprinted polymers (MIPs) is a result of the fabrication process based on the template-tailored polymerization of functional monomers. The three-dimensional cavities formed in the polymer network can serve as the recognition elements of sensors because of their specificity and stability. Appending specific molecularly imprinted layers to QDs is a promising strategy to enhance the stability, sensitivity, and selective fluorescence response of the resulting sensors. By merging the benefits of MIPs and QDs, inventive optical sensors are constructed. In this review, the recent synthetic strategies used for the fabrication of QD nanocrystals emphasizing various approaches to effective functionalization in aqueous environments are discussed followed by a detailed presentation of current advances in QD conjugated MIPs (MIP-QDs). Frontiers in manufacturing of specific imprinted layers of these nanomaterials are presented and factors affecting the specific behaviour of an MIP shell are identified. Finally, current limitations of MIP-QDs are defined and prospects are outlined to amplify the capability of MIP-QDs in future sensing.

14.
J Sep Sci ; 42(7): 1412-1422, 2019 Apr.
Article En | MEDLINE | ID: mdl-30681270

The objective of this article was to design the selective molecularly imprinted sorbent dedicated to the solid-phase extraction of S-pramipexole from the complex matrix such as human urine. For that purpose, S-2,6-diamino-4,5,6,7-tetrahydrobenzothiazole was used as the template acting as the structural analog of S-pramipexole and five various monomers were employed in the presence of ethylene glycol dimethacrylate to produce molecularly imprinted polymers. The binding capabilities of resulted polymers revealed that the highest imprinting effect was noted for polymer prepared from the itaconic acid. The comprehensive analysis of morphology and the characterization of binding sites showed not only negligible differences in the extension of surfaces of imprinted and nonimprinted polymers but also higher heterogeneity of binding sites in the imprinted material. Comprehensive optimization of the molecularly imprinted solid-phase extraction allowed to select the most appropriate solvents for loading, washing, and elution steps. Subsequent optimization of mass of sorbent and volumes of solvents allowed to achieve satisfactory total recoveries of S-pramipexole from the model multicomponent real sample of human urine that equals to 91.8 ± 3.2% for imprinted sorbent with comparison to only 37.1 ± 1.1% for Oasis MCX.


Molecular Imprinting , Polymers/chemistry , Pramipexole/isolation & purification , Solid Phase Extraction , Adsorption , Humans , Particle Size , Polymers/chemical synthesis , Pramipexole/chemistry , Pramipexole/urine , Stereoisomerism , Surface Properties
15.
J Chromatogr A ; 1587: 61-72, 2019 Feb 22.
Article En | MEDLINE | ID: mdl-30579638

In this paper, we proposed an innovative hydrophilic interaction dispersive solid-phase extraction (HI-d-SPE) protocol suitable for the isolation of the potential cyanide intoxication marker, 2-aminothiazoline-4-carboxylic acid (ATCA), from such complicated matrix as post-mortem blood. To create an optimal HI-d-SPE protocol, two sorbents were used: a molecularly imprinted polymer (MIP) and commercially available Oasis-MCX®. The latter sorbent was identified as more recovery-efficient with higher clean-up abilities in a carefully optimized process. Computational analysis was employed to provide insight into the adsorption mechanism of the two selected sorbents. The theoretical results were in agreement with the experiment regarding the efficiency of the sorbent. HI-d-SPE was successfully applied to the analysis of ATCA in 20 post-mortem blood samples using LC-MS/MS. The analytical performance of the method was finally compared to prior existing methods, in turn revealing its superiority.


Biomarkers/blood , Diagnostic Techniques and Procedures , Solid Phase Extraction/methods , Thiazoles/blood , Thiazoles/isolation & purification , Adsorption , Chromatography, Liquid , Humans , Hydrophobic and Hydrophilic Interactions , Polymers , Reproducibility of Results , Tandem Mass Spectrometry
16.
Mater Sci Eng C Mater Biol Appl ; 76: 1344-1353, 2017 Jul 01.
Article En | MEDLINE | ID: mdl-28482502

This review presents the current status of molecularly imprinted polymers (MIPs) for drug delivery, in particular the studies that focus on biocompatibility, cytotoxicity, and in vitro or in vivo behavior of MIPs. It also shows the limitations that hamper the introduction of MIPs to pharmacotherapy and prevent this class of polymers from commercialization. MIPs are promising materials in the construction of drug delivery devices because they can provide improved delivery profiles or longer release times and deliver the drugs in the feedback regulated way, which is extremely important in modern pharmacotherapy. Here, a brief overview of the imprinting process and a concise description of drug release mechanisms from the imprinted materials will be presented followed by the discussion of potential MIP drug delivery devices for ocular, dermal, intravenous and oral routes of administration. Finally, future prospects for imprinted drug delivery forms will be outlined.


Molecular Imprinting , Delayed-Action Preparations , Drug Delivery Systems , Polymers
17.
J Sep Sci ; 40(8): 1824-1833, 2017 Apr.
Article En | MEDLINE | ID: mdl-28195396

This study presents a validated strategy for the determination of tryptamine in the presence of its competitors, which involves the molecularly imprinted solid-phase extraction combined with high-performance liquid chromatography coupled with fluorimetric detection. Tryptamine-imprinted microscale sorbent was produced from 4-vinylbenzoic acid and ethylene glycol dimethacrylate in methanol by precipitation polymerization, and its imprinting factor was equal to 15.4 in static experiments or 18.6 in dynamic binding experiments. The method for tryptamine determination in the presence of serotonin and l-tryptophan was validated using a complex matrix of bovine serum albumin yielding the recoveries of tryptamine that ranged between 98.7 and 107.0%. Very low limits of detection and limits of quantification for tryptamine (19.9 and 60.3 nmol/L, respectively) allow the quantification of tryptamine in human cerebrospinal fluid in the presence of tryptophan and serotonin.


Molecular Imprinting , Tryptamines/cerebrospinal fluid , Chromatography, High Pressure Liquid , Humans , Polymers , Serotonin , Solid Phase Extraction , Tryptophan
18.
Mater Sci Eng C Mater Biol Appl ; 65: 400-7, 2016 Aug 01.
Article En | MEDLINE | ID: mdl-27157767

The aim of this study was to develop an efficient sorbent for separation of N,N-dimethyl-3-aminomethylindole (gramine) from bovine serum albumin. An imprinting technology was involved in the synthesis of polymers from nine different functional monomers in the presence of ethylene glycol dimethacrylate as a cross-linker. The analysis of binding capacities showed that the highest specificity towards gramine was achieved when 4-vinylbenzoic acid was used as the functional monomer in methanol to form the bulk imprinted polymer, MIP1 (imprinting factor equal to 21.3). The Scatchard analysis of MIP1 showed two classes of binding sites with the dissociation constants Kd equal to 0.105 and 6.52µmolL(-1). The composition and morphology of polymers were defined by (13)C CP/MAS NMR, BET and SEM-EDS analyses. The recognition mechanism of MIP1 was tested using the structurally related bioanalytes, and the dominant role of indole moiety and ethylamine side chain was revealed. A new MISPE protocol was optimized for separation of gramine. The total recoveries on MIP1 were equal to 94±12 % from standard solutions and 85±11 % from bovine serum albumin.


Alkaloids/isolation & purification , Molecular Imprinting , Serum Albumin, Bovine/chemistry , Animals , Binding Sites , Cattle , Indole Alkaloids , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Polymers/chemical synthesis , Polymers/chemistry , Solid Phase Extraction , Styrenes/chemistry
19.
J Sep Sci ; 39(5): 895-903, 2016 Mar.
Article En | MEDLINE | ID: mdl-26732188

An efficient molecularly imprinted solid-phase extraction protocol was developed for the separation of dopamine (DA) from human urine. After successful validation of the analytical method using high-performance liquid chromatography coupled with fluorescence detection, a new strategy for the selective determination of DA in the presence of norepinephrine and epinephrine in human urine was presented. In the proposed protocol, the LODs and quantification for DA were 166 ± 36 and 500 ± 110 nmol/L, respectively, and the total recoveries of DA in the range of 1-15 µmol/L varied between 98.3 and 101.1%. DA was detected in the real urine samples at the level of 47-167 µg/L (0.250-0.895 µmol/L). The superiority of the novel analytical strategy was shown by comparison with the results obtained for a commercially available imprinted sorbent.


Dopamine/isolation & purification , Dopamine/urine , Polymers/chemistry , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid , Humans , Molecular Imprinting , Polymers/chemical synthesis , Solid Phase Extraction/instrumentation
20.
Talanta ; 146: 556-67, 2016.
Article En | MEDLINE | ID: mdl-26695304

Ten molecularly imprinted polymers coded as MIP1-MIP10 were prepared by the radical bulk polymerization using (R,S)-(±)-2-amino-1-phenylethanol as the structural analog of the target analyte (R,S)-octopamine. The functional monomers, 4-vinylbenzoic acid (1), methacrylic acid (2), acrylic acid (3), trifluoromethacrylic acid (4), itaconic acid (5), acrylamide (6), isopropenylbenzene (7), 2-hydroxyethyl methacrylate (8), 2-(diethylamino)ethyl methacrylate (9), allylamine (10) were polymerized consecutively with the ethylene glycol dimethacrylate cross-linker in methanol as the porogen. On the basis of the binding capacity of (R,S)-octopamine MIP1 with affinity factor equal to 6.37 was selected for further analysis. The affinity of polymer matrix MIP1 was tested by the non-competitive binding experiments of eight structurally related analytes. Finally, molecularly imprinted solid phase extraction (MISPE) of (R,S)-octopamine from spiked human serum albumin was carried out in order to verify the applicability of novel sorbent. The molecular modeling was employed to rationalize the stereodifferentiation of the analytes by the stereospecific sites formed in the polymer matrix.


Benzyl Alcohols/chemistry , Models, Molecular , Molecular Imprinting , Octopamine/chemistry , Octopamine/isolation & purification , Polymers/chemical synthesis , Solid Phase Extraction/methods , Humans , Molecular Conformation , Polymers/chemistry , Serum Albumin/chemistry , Stereoisomerism
...