Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Plants ; 9(6): 883-888, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37264151

RESUMEN

Strigolactones (SLs) regulate many aspects of plant development, but ambiguities remain about how this hormone is perceived because SL-complexed receptor structures do not exist. We find that when SL binds the Striga receptor, ShHTL5, a series of conformational changes relative to the unbound state occur, but these events are not sufficient for signalling. Ligand-complexed receptors, however, form internal tunnels that posit an explanation for how SL exits its receptor after hydrolysis.


Asunto(s)
Striga , Striga/fisiología , Germinación , Lactonas/metabolismo , Hormonas/metabolismo
3.
J Biol Chem ; 298(4): 101734, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35181340

RESUMEN

Crop parasites of the Striga genera are a major biological deterrent to food security in Africa and are one of the largest obstacles to poverty alleviation on the continent. Striga seeds germinate by sensing small-molecule hormones, strigolactones (SLs), that emanate from host roots. Although SL receptors (Striga hermonthica HYPOSENSITIVE TO LIGHT [ShHTL]) have been identified, discerning their function has been difficult because these parasites cannot be easily grown under laboratory conditions. Moreover, many Striga species are obligate outcrossers that are not transformable, hence not amenable to genetic analysis. By combining phenotypic screening with ShHTL structural information and hybrid drug discovery methods, we discovered a potent SL perception inhibitor for Striga, dormirazine (DOZ). Structural analysis of this piperazine-based antagonist reveals a novel binding mechanism, distinct from that of known SLs, blocking access of the hormone to its receptor. Furthermore, DOZ reduces the flexibility of protein-protein interaction domains important for receptor signaling to downstream partners. In planta, we show, via temporal additions of DOZ, that SL receptors are required at a specific time during seed conditioning. This conditioning is essential to prime seed germination at the right time; thus, this SL-sensitive stage appears to be critical for adequate receptor signaling. Aside from uncovering a function for ShHTL during seed conditioning, these results suggest that future Ag-Biotech Solutions to Striga infestations will need to carefully time the application of antagonists to exploit receptor availability and outcompete natural SLs, critical elements for successful parasitic plant invasions.


Asunto(s)
Lactonas , Extractos Vegetales , Plantas , Striga , Germinación/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos , Interacciones Huésped-Patógeno/efectos de los fármacos , Lactonas/farmacología , Enfermedades de las Plantas/prevención & control , Extractos Vegetales/farmacología , Plantas/parasitología , Striga/efectos de los fármacos , Striga/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301902

RESUMEN

Uncovering the basis of small-molecule hormone receptors' evolution is paramount to a complete understanding of how protein structure drives function. In plants, hormone receptors for strigolactones are well suited to evolutionary inquiries because closely related homologs have different ligand preferences. More importantly, because of facile plant transgenic systems, receptors can be swapped and quickly assessed functionally in vivo. Here, we show that only three mutations are required to turn the nonstrigolactone receptor, KAI2, into a receptor that recognizes the plant hormone strigolactone. This modified receptor still retains its native function to perceive KAI2 ligands. Our directed evolution studies indicate that only a few keystone mutations are required to increase receptor promiscuity of KAI2, which may have implications for strigolactone receptor evolution in parasitic plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Furanos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Hidrolasas/metabolismo , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Piranos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolasas/genética , Mutación , Filogenia , Unión Proteica
5.
Curr Opin Plant Biol ; 63: 102070, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34166978

RESUMEN

Since the early days of plant biology, small molecule hormones have held a central place in our understanding of development. A key feature of plant hormone action is the ability to regulate multiple developmental processes. Despite this pleiotropy, decades of genetic and molecular studies have shown that plant hormone signaling is often canalized through a core pathway. This raises the difficult question of how one signaling pathway produces different outputs in different tissues. Drawing on examples from gibberellin and strigolactone signaling pathways, we propose this conceptual problem arises from an upside-down perspective of hormone signaling. Recent studies have revealed hormone and core pathway-independent mechanisms of regulating downstream signaling components, which could explain multiple developmental responses to the same hormone.


Asunto(s)
Giberelinas , Reguladores del Crecimiento de las Plantas , Regulación de la Expresión Génica de las Plantas , Plantas/genética , Transducción de Señal
6.
Plant Signal Behav ; 16(3): 1855845, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33300428

RESUMEN

In the model plant Arabidopsis thaliana, two mutually antagonistic hormones regulate germination: abscisic acid (ABA) which promotes dormancy and gibberellins (GA) which breaks dormancy. Mutants auxotrophic for or insensitive to GA do not germinate. However, changes in the signaling flux through other hormone pathways will permit GA-independent germination. These changes include increased brassinosteroid (BR) signaling and decreased ABA signaling. Recently, strigolactone (SL) was also shown to enable GA-independent germination, provided the seeds express the SL receptor ShHTL7 from the parasitic plant Striga hermonthica. Here we show that a mutation which reduces sensitivity to BR (bri1-6) prevents ShHTL7 from promoting GA-independent germination. Further, we show that neither ShHTL7 nor the constitutive karrikin signaling mutant smax1-2 confer insensitivity to ABA. These results suggest ShHTL7 requires functional BR perception to bypass the GA requirement for germination.


Asunto(s)
Brasinoesteroides/metabolismo , Germinación , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Striga/crecimiento & desarrollo , Striga/metabolismo , Fenotipo
7.
Plant J ; 105(2): 322-334, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33215770

RESUMEN

A collection of small molecules called strigolactones (SLs) act as both endogenous hormones to control plant development and as ecological communication cues between organisms. SL signalling overlaps with that of a class of smoke-derived compounds, karrikins (KARs), which have distinct yet overlapping developmental effects on plants. Although the roles of SLs in shoot and root development, in the promotion of arbuscular mycorrhizal (AM) fungal branching and in parasitic plant germination have been well characterized, recent data have illustrated broader roles for these compounds in the rhizosphere. Here, we review the known roles of SLs in development, growth of AM fungi and germination of parasitic plants to develop a framework for understanding the use of SLs as molecules of communication in the rhizosphere. It appears, for example, that there are many connections between SLs and phosphate utilization. Low phosphate levels regulate SL metabolism and, in turn, SLs sculpt root and shoot architecture to coordinate growth and optimize phosphate uptake from the environment. Plant-exuded SLs attract fungal symbionts to deliver inorganic phosphate (Pi) to the host. These and other examples suggest the boundary between exogenous and endogenous SL functions can be easily blurred and a more holistic view of these small molecules is likely to be required to fully understand SL biology. Related to this, we summarize and discuss evidence for a primitive role of SLs in moss as a quorum sensing-like molecule, providing a unifying concept of SLs as endogenous and exogenous signalling molecules.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Micorrizas/metabolismo , Fósforo/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/fisiología , Simbiosis
8.
Nat Plants ; 6(6): 646-652, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451447

RESUMEN

Parasitic plant infestations dramatically reduce the yield of many major food crops of sub-Saharan Africa and pose a serious threat to food security on that continent1. The first committed step of a successful infestation is the germination of parasite seeds primarily in response to a group of related small-molecule hormones called strigolactones (SLs), which are emitted by host roots2. Despite the important role of SLs, it is not clear how host-derived SLs germinate parasitic plants. In contrast, gibberellins (GA) acts as the dominant hormone for stimulation of germination in non-parasitic plant species by inhibiting a set of DELLA repressors3. Here, we show that expression of SL receptors from the parasitic plant Striga hermonthica in the presence of SLs circumvents the GA requirement for germination of Arabidopsis thaliana seed. Striga receptors co-opt and enhance signalling through the HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (AtHTL/KAI2) pathway, which normally plays a rudimentary role in Arabidopsis seed germination4,5. AtHTL/KAI2 negatively controls the SUPPRESSOR OF MAX2 1 (SMAX1) protein5, and loss of SMAX1 function allows germination in the presence of DELLA repressors. Our data suggest that ligand-dependent inactivation of SMAX1 in Striga and Arabidopsis can bypass GA-dependent germination in these species.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Germinación/genética , Giberelinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Transducción de Señal , Striga/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Striga/genética
9.
Commun Biol ; 3(1): 145, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32218501

RESUMEN

Yeast Snf1 (Sucrose non-fermenting1), mammalian AMPK (5' AMP-activated protein kinase) and plant SnRK1 (Snf1-Related Kinase1) are conserved heterotrimeric kinase complexes that re-establish energy homeostasis following stress. The hormone abscisic acid (ABA) plays a crucial role in plant stress response. Activation of SnRK1 or ABA signaling results in overlapping transcriptional changes, suggesting these stress pathways share common targets. To investigate how SnRK1 and ABA interact during stress response in Arabidopsis thaliana, we screened the SnRK1 complex by yeast two-hybrid against a library of proteins encoded by 258 ABA-regulated genes. Here, we identify 125 SnRK1- interacting proteins (SnIPs). Network analysis indicates that a subset of SnIPs form signaling modules in response to abiotic stress. Functional studies show the involvement of SnRK1 and select SnIPs in abiotic stress responses. This targeted study uncovers the largest set of SnRK1 interactors, which can be used to further characterize SnRK1 role in plant survival under stress.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de los fármacos , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Cloruro de Sodio/farmacología , Sorbitol/farmacología , Estrés Fisiológico , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Presión Osmótica , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Proteínas Serina-Treonina Quinasas/genética , Estrés Salino , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
10.
Curr Biol ; 29(18): 3041-3052.e4, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31522940

RESUMEN

Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Striga/genética , Animales , Evolución Biológica , Evolución Molecular , Transferencia de Gen Horizontal/genética , Germinación , Orobanchaceae/genética , Parásitos/genética , Parásitos/metabolismo , Raíces de Plantas , Semillas , Simbiosis
11.
Plant J ; 100(1): 187-198, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31148337

RESUMEN

The phytopathogen Pseudomonas syringae delivers into host cells type III secreted effectors (T3SEs) that promote virulence. One virulence mechanism employed by T3SEs is to target hormone signaling pathways to perturb hormone homeostasis. The phytohormone abscisic acid (ABA) influences interactions between various phytopathogens and their plant hosts, and has been shown to be a target of P. syringae T3SEs. In order to provide insight into how T3SEs manipulate ABA responses, we generated an ABA-T3SE interactome network (ATIN) between P. syringae T3SEs and Arabidopsis proteins encoded by ABA-regulated genes. ATIN consists of 476 yeast-two-hybrid interactions between 97 Arabidopsis ABA-regulated proteins and 56 T3SEs from four pathovars of P. syringae. We demonstrate that T3SE interacting proteins are significantly enriched for proteins associated with transcription. In particular, the ETHYLENE RESPONSIVE FACTOR (ERF) family of transcription factors is highly represented. We show that ERF105 and ERF8 displayed a role in defense against P. syringae, supporting our overall observation that T3SEs of ATIN converge on proteins that influence plant immunity. In addition, we demonstrate that T3SEs that interact with a large number of ABA-regulated proteins can influence ABA responses. One of these T3SEs, HopF3Pph6 , inhibits the function of ERF8, which influences both ABA-responses and plant immunity. These results provide a potential mechanism for how HopF3Pph6 manipulates ABA-responses to promote P. syringae virulence, and also demonstrate the utility of ATIN as a resource to study the ABA-T3SE interface.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Pseudomonas syringae/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Mapas de Interacción de Proteínas/genética , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Virulencia/genética
12.
BMC Plant Biol ; 18(1): 211, 2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30261844

RESUMEN

BACKGROUND: ETHYLENE RESPONSE FACTOR (ERF) 8 is a member of one of the largest transcription factor families in plants, the APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) superfamily. Members of this superfamily have been implicated in a wide variety of processes such as development and environmental stress responses. RESULTS: In this study we demonstrated that ERF8 is involved in both ABA and immune signaling. ERF8 overexpression induced programmed cell death (PCD) in Arabidopsis and Nicotiana benthamiana. This PCD was salicylic acid (SA)-independent, suggesting that ERF8 acts downstream or independent of SA. ERF8-induced PCD was abolished by mutations within the ERF-associated amphiphilic repression (EAR) motif, indicating ERF8 induces cell death through its transcriptional repression activity. Two immunity-related mitogen-activated protein kinases, MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) and MPK11, were identified as ERF8-interacting proteins and directly phosphorylated ERF8 in vitro. Four putative MPK phosphorylation sites were identified in ERF8, one of which (Ser103) was determined to be the predominantly phosphorylated residue in vitro, while mutation of all four putative phosphorylation sites partially suppressed ERF8-induced cell death in N. benthamiana. Genome-wide transcriptomic analysis and pathogen growth assays confirmed a positive role of ERF8 in mediating immunity, as ERF8 knockdown or overexpression lines conferred compromised or enhanced resistance against the hemibiotrophic bacterial pathogen Pseudomonas syringae, respectively. CONCLUSIONS: Together these data reveal that the ABA-inducible transcriptional repressor ERF8 has dual roles in ABA signaling and pathogen defense, and further highlight the complex influence of ABA on plant-microbe interactions.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Inmunidad de la Planta/fisiología , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Fosforilación , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Pseudomonas syringae/patogenicidad , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Ácido Salicílico/metabolismo , Serina/genética , Transducción de Señal , Nicotiana/genética
13.
F1000Res ; 6: 975, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690842

RESUMEN

Strigolactones (SLs) are a collection of related small molecules that act as hormones in plant growth and development. Intriguingly, SLs also act as ecological communicators between plants and mycorrhizal fungi and between host plants and a collection of parasitic plant species. In the case of mycorrhizal fungi, SLs exude into the soil from host roots to attract fungal hyphae for a beneficial interaction. In the case of parasitic plants, however, root-exuded SLs cause dormant parasitic plant seeds to germinate, thereby allowing the resulting seedling to infect the host and withdraw nutrients. Because a laboratory-friendly model does not exist for parasitic plants, researchers are currently using information gleaned from model plants like Arabidopsis in combination with the chemical probes developed through chemical genetics to understand SL perception of parasitic plants. This work first shows that understanding SL signaling is useful in developing chemical probes that perturb SL perception. Second, it indicates that the chemical space available to probe SL signaling in both model and parasitic plants is sizeable. Because these parasitic pests represent a major concern for food insecurity in the developing world, there is great need for chemical approaches to uncover novel lead compounds that perturb parasitic plant infections.

14.
Nat Chem Biol ; 13(6): 599-606, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28514432

RESUMEN

Small-molecule hormones play central roles in plant development, ranging from cellular differentiation and organ formation to developmental response instruction in changing environments. A recently discovered collection of related small molecules collectively called strigolactones are of particular interest, as these hormones also function as ecological communicators between plants and fungi and between parasitic plants and their hosts. Advances from model plant systems have begun to unravel how, as a hormone, strigolactone is perceived and transduced. In this Review, we summarize this information and examine how understanding strigolactone hormone signaling is leading to insights into parasitic plant infections. We specifically focus on how the development of chemical probes can be used in combination with model plant systems to dissect strigolactone's perception in the parasitic plant Striga hermonthica. This information is particularly relevant since Striga is considered one of the largest impediments to food security in sub-Saharan Africa.


Asunto(s)
Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Transducción de Señal/fisiología , Lactonas/química , Micorrizas/metabolismo , Desarrollo de la Planta , Plantas/química , Plantas/metabolismo , Plantas/microbiología , Unión Proteica
15.
Trends Biochem Sci ; 42(7): 556-565, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28495334

RESUMEN

Strigolactones (SLs) are small molecules that act as endogenous hormones to regulate plant development as well as exogenous cues that help parasitic plants to infect their hosts. Given that parasitic plants are experimentally challenging systems, researchers are using two approaches to understand how they respond to host-derived SLs. The first involves extrapolating information on SLs from model genetic systems to dissect their roles in parasitic plants. The second uses chemicals to probe SL signaling directly in the parasite Striga hermonthica. These approaches indicate that parasitic plants have co-opted a family of α/ß hydrolases to perceive SLs. The importance of this genetic and chemical information cannot be overstated since parasitic plant infestations are major obstacles to food security in the developing world.


Asunto(s)
Lactonas/metabolismo , Modelos Biológicos , Plantas/parasitología , Transducción de Señal , Striga/metabolismo , Plantas/metabolismo
16.
Plant Physiol ; 171(4): 2760-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27255484

RESUMEN

The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Giberelinas/biosíntesis , Tallos de la Planta/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Tallos de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
17.
Science ; 350(6257): 203-7, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26450211

RESUMEN

Strigolactones are naturally occurring signaling molecules that affect plant development, fungi-plant interactions, and parasitic plant infestations. We characterized the function of 11 strigolactone receptors from the parasitic plant Striga hermonthica using chemical and structural biology. We found a clade of polyspecific receptors, including one that is sensitive to picomolar concentrations of strigolactone. A crystal structure of a highly sensitive strigolactone receptor from Striga revealed a larger binding pocket than that of the Arabidopsis receptor, which could explain the increased range of strigolactone sensitivity. Thus, the sensitivity of Striga to strigolactones from host plants is driven by receptor sensitivity. By expressing strigolactone receptors in Arabidopsis, we developed a bioassay that can be used to identify chemicals and crops with altered strigolactone levels.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/química , Receptores de Superficie Celular/química , Striga/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Dominio Catalítico , Germinación/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Datos de Secuencia Molecular , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Estructura Secundaria de Proteína , Receptores de Superficie Celular/clasificación , Receptores de Superficie Celular/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Striga/genética , Striga/crecimiento & desarrollo , Relación Estructura-Actividad
18.
Dev Cell ; 29(3): 360-72, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24823379

RESUMEN

The sesquiterpenoid abscisic acid (ABA) mediates an assortment of responses across a variety of kingdoms including both higher plants and animals. In plants, where most is known, a linear core ABA signaling pathway has been identified. However, the complexity of ABA-dependent gene expression suggests that ABA functions through an intricate network. Here, using systems biology approaches that focused on genes transcriptionally regulated by ABA, we defined an ABA signaling network of over 500 interactions among 138 proteins. This map greatly expanded ABA core signaling but was still manageable for systematic analysis. For example, functional analysis was used to identify an ABA module centered on two sucrose nonfermenting (SNF)-like kinases. We also used coexpression analysis of interacting partners within the network to uncover dynamic subnetwork structures in response to different abiotic stresses. This comprehensive ABA resource allows for application of approaches to understanding ABA functions in higher plants.


Asunto(s)
Ácido Abscísico/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética
19.
PLoS One ; 7(8): e42914, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22916179

RESUMEN

Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/citología , Adhesión Celular/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabinosa/metabolismo , Adhesión Celular/genética , Clonación Molecular , Galactosa/metabolismo , Aparato de Golgi/metabolismo , Pectinas/metabolismo
20.
BMC Biol ; 10: 8, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22348746

RESUMEN

BACKGROUND: The embryonic temporal regulator FUSCA3 (FUS3) plays major roles in the establishment of embryonic leaf identity and the regulation of developmental timing. Loss-of-function mutations of this B3 domain transcription factor result in replacement of cotyledons with leaves and precocious germination, whereas constitutive misexpression causes the conversion of leaves into cotyledon-like organs and delays vegetative and reproductive phase transitions. RESULTS: Herein we show that activation of FUS3 after germination dampens the expression of genes involved in the biosynthesis and response to the plant hormone ethylene, whereas a loss-of-function fus3 mutant shows many phenotypes consistent with increased ethylene signaling. This FUS3-dependent regulation of ethylene signaling also impinges on timing functions outside embryogenesis. Loss of FUS3 function results in accelerated vegetative phase change, and this is again partially dependent on functional ethylene signaling. This alteration in vegetative phase transition is dependent on both embryonic and vegetative FUS3 function, suggesting that this important transcriptional regulator controls both embryonic and vegetative developmental timing. CONCLUSION: The results of this study indicate that the embryonic regulator FUS3 not only controls the embryonic-to-vegetative phase transition through hormonal (ABA/GA) regulation but also functions postembryonically to delay vegetative phase transitions by negatively modulating ethylene-regulated gene expression.


Asunto(s)
Arabidopsis/genética , Etilenos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo , Mutación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...