Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
Eur J Endocrinol ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38781444

OBJECTIVE: The metabolic phenotype of totally pancreatectomised patients includes hyperaminoacidaemia and predisposition to hypoglycaemia and hepatic lipid accumulation. We aimed to investigate whether the loss of pancreatic glucagon may be responsible for these changes. METHODS: Nine middle-aged, normal-weight totally pancreatectomised patients, nine patients with type 1 diabetes (C-peptide negative), and nine matched controls underwent two separate experimental days, each involving a 150-minute intravenous infusion of glucagon (4 ng/kg/min) or placebo (saline) under fasting conditions while any basal insulin treatment was continued. RESULTS: Glucagon infusion increased plasma glucagon to similar high physiological levels in all groups. The infusion increased hepatic glucose production and decreased plasma concentration of most amino acids in all groups, with more pronounced effects in the totally pancreatectomised patients compared to the other groups. Glucagon infusion diminished fatty acid re-esterification and tended to decrease plasma concentrations of fatty acids in the totally pancreatectomised patients but not in the type 1 diabetes patients. CONCLUSION: Totally pancreatectomised patients were characterised by increased sensitivity to exogenous glucagon at the level of hepatic glucose, amino acid, and lipid metabolism; suggesting that the metabolic disturbances characterising these patients may be rooted in perturbed hepatic processes normally controlled by pancreatic glucagon.

2.
Peptides ; 179: 171242, 2024 May 22.
Article En | MEDLINE | ID: mdl-38782050

Oxytocin has been proposed to possess glucose-stabilizing effects through the release of insulin and glucagon from the pancreas. Also, exogenous oxytocin has been shown to stimulate extrapancreatic glucagon secretion in depancreatized dogs. Here, we investigated the effect of exogenous oxytocin on circulating levels of pancreatic and gut-derived glucose-stabilizing hormones (insulin [measured as C-peptide], glucagon, glucagon-like peptide 1 [GLP-1], and glucose-dependent insulinotropic polypeptide). We studied nine pancreatectomized (PX) patients and nine healthy controls (CTRLs) (matched on age and body mass index) before, during, and after an intravenous infusion of 10 IU of oxytocin administered over 12 min. Oxytocin did not increase plasma glucagon levels, nor induce any changes in plasma glucose, C-peptide, or GIP in any of the groups. Oxytocin decreased plasma glucagon levels by 19 ± 10 % in CTRLs (from 2.0 ± 0.5 [mean ± SEM] to 1.3 ± 0.2 pmol/l, P = 0.0025) and increased GLP-1 by 42 ± 22 % in PX patients (from 9.0 ± 1.0-12.7 ± 1.0 pmol/l, P = 0.0003). Fasting plasma glucose levels were higher in PX patients compared with CTRLs (13.1 ± 1.1 vs. 5.1 ± 0.1 mmol/l, P < 0.0001). In conclusion, the present findings do not support pancreas-mediated glucose-stabilizing effects of acute oxytocin administration in humans and warrant further investigation of oxytocin's gluco-metabolic effects.

3.
Peptides ; 177: 171210, 2024 Jul.
Article En | MEDLINE | ID: mdl-38579917

Recent advancements in understanding glucagon-like peptide 2 (GLP-2) biology and pharmacology have sparked interest in targeting the GLP-2 receptor (GLP-2R) in the treatment of obesity. GLP-2 is a proglucagon-derived 33-amino acid peptide co-secreted from enteroendocrine L cells along with glucagon-like peptide 1 (GLP-1) and has a range of actions via the GLP-2R, which is particularly expressed in the gastrointestinal tract, the liver, adipose tissue, and the central nervous system (CNS). In humans, GLP-2 evidently induces intestinotrophic effects (i.e., induction of intestinal mucosal proliferation and improved gut barrier function) and promotes mesenteric blood flow. However, GLP-2 does not seem to have appetite or food intake-reducing effects in humans, but its gut barrier-promoting effect may be of interest in the context of obesity. Obesity is associated with reduced gut barrier function, increasing the translocation of proinflammatory gut content to the circulation. This phenomenon constitutes a strong driver of obesity-associated systemic low-grade inflammation, which in turn plays a major role in the development of most obesity-associated complications. Thus, the intestinotrophic and gut barrier-improving effect of GLP-2, which in obese rodent models shows strong anti-inflammatory potential, may, in combination with food intake-reducing strategies, e.g., GLP-1 receptor (GLP-1) agonism, be able to rectify core pathophysiological mechanism of obesity. Here, we provide an overview of GLP-2 physiology in the context of obesity pathophysiology and review the pharmacological potential of GLP-2R activation in the management of obesity and related comorbidities.


Glucagon-Like Peptide 2 , Glucagon-Like Peptide-2 Receptor , Obesity , Humans , Obesity/metabolism , Obesity/drug therapy , Glucagon-Like Peptide-2 Receptor/metabolism , Glucagon-Like Peptide 2/metabolism , Animals
4.
Endocr Connect ; 13(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38276866

Objective: In obesity and type 2 diabetes, hyperglucagonaemia may be caused by elevated levels of glucagonotropic amino acids due to hepatic glucagon resistance at the level of amino acid turnover. Here, we investigated the effect of exogenous glucagon on circulating amino acids in obese and non-obese individuals with and without type 2 diabetes. Design: This was a post hoc analysis in a glucagon infusion study performed in individuals with type 2 diabetes (n = 16) and in age, sex, and body mass index-matched control individuals without diabetes (n = 16). Each group comprised two subgroups of eight individuals with and without obesity, respectively. Methods: All participants received a 1-h glucagon infusion (4 ng/kg/min) in the overnight fasted state. Plasma amino acid concentrations were measured with frequent intervals. Results: Compared to the control subgroup without obesity, baseline total amino acid levels were elevated in the control subgroup with obesity and in the type 2 diabetes subgroup without obesity. In all subgroups, amino acid levels decreased by up to 20% in response to glucagon infusion, which resulted in high physiological steady-state glucagon levels (mean concentration: 74 pmol/L, 95% CI [68;79] pmol/L). Following correction for multiple testing, no intergroup differences in changes in amino acid levels reached significance. Conclusion: Obesity and type 2 diabetes status was associated with elevated fasting levels of total amino acids. The glucagon infusion decreased circulating amino acid levels similarly in all subgroups, without significant differences in the response to exogenous glucagon between individuals with and without obesity and type 2 diabetes. Significance statement: The hormone glucagon stimulates glucose production from the liver, which may promote hyperglycaemia if glucagon levels are abnormally elevated, as is often seen in type 2 diabetes and obesity. Glucagon levels are closely linked to, and influenced by, the levels of circulating amino acids. To further investigate this link, we measured amino acid levels in individuals with and without obesity and type 2 diabetes before and during an infusion of glucagon. We found that circulating amino acid levels were higher in type 2 diabetes and obesity, and that glucagon infusion decreased amino acid levels in both individuals with and without type 2 diabetes and obesity. The study adds novel information to the link between circulating levels of glucagon and amino acids.

5.
Diabetes Care ; 47(1): 71-80, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37703527

OBJECTIVE: Insulin remains the only glucose-lowering treatment modality recommended for totally pancreatectomized patients. We investigated the effects of the sodium-glucose cotransporter 2 inhibitor empagliflozin on fasting and postprandial glucose concentrations in pancreatectomized patients and matched healthy control participants. RESEARCH DESIGN AND METHODS: In a randomized, double-blind, placebo-controlled crossover study, 10 pancreatectomized patients and 10 matched control participants underwent two 3-h liquid mixed meal tests preceded by two doses of 25 mg empagliflozin (administered the night before and in the morning of the meal test) or placebo, respectively. Basal insulin was administered as usual, but bolus insulin was omitted before the meal test during experimental days. RESULTS: Compared with placebo, empagliflozin lowered fasting plasma glucose (5.0 ± 0.4 vs. 7.9 ± 0.9 mmol/L [mean ± SEM], P = 0.007) and postprandial plasma glucose excursions as assessed by baseline-subtracted area under the curve (1,080 [733; 1,231] vs. 1,169 [1,036; 1,417] pmol/L × min [median (25th and 75th percentiles)], P = 0.014) in the pancreatectomized patients. In the control participants, empagliflozin lowered fasting plasma glucose compared with placebo (5.1 ± 0.1 vs. 5.5 ± 0.1 mmol/L, P = 0.008) without affecting postprandial glucose excursions significantly. The pancreatomy group exhibited greater postprandial glucagon excursions compared with the control group on both experimental days (P ≤ 0.015); no within-group differences between days were observed. CONCLUSIONS: Empagliflozin administered the day before and immediately before a standardized liquid mixed meal test normalized fasting hyperglycemia and improved postprandial glucose tolerance in pancreatectomized patients.


Diabetes Mellitus, Type 2 , Hyperglycemia , Humans , Diabetes Mellitus, Type 2/drug therapy , Cross-Over Studies , Blood Glucose , Hyperglycemia/drug therapy , Hyperglycemia/prevention & control , Insulin/therapeutic use , Fasting , Glucose/therapeutic use , Double-Blind Method , Postprandial Period
6.
Endocr Connect ; 13(1)2024 Jan 01.
Article En | MEDLINE | ID: mdl-37947763

Aims: Hyperglucagonaemia contributes to the pathophysiology in type 2 diabetes (T2D), but the mechanisms behind the inappropriate glucagon secretion are not fully understood. Glucagon and amino acids are regulated in a feedback loop referred to as the liver-α cell axis. Individuals with non-alcoholic fatty liver disease (NAFLD) appear to be glucagon resistant, disrupting the liver-α cell axis resulting in hyperglucagonaemia and hyperaminoacidaemia. We investigated the associations between circulating glucagon, amino acids, and liver fat content in a cohort of individuals with T2D. Methods: We included 110 individuals with T2D in this cross-sectional study. Liver fat content was quantified using 1H magnetic resonance spectroscopy (MRS). Associations between liver fat content and plasma glucagon and amino acids, respectively, were estimated in multivariate linear regression analyses. Results: Individuals with NAFLD (n = 52) had higher plasma glucagon concentrations than individuals without NAFLD (n = 58). The positive association between plasma glucagon concentrations and liver fat content was confirmed in the multivariable regression analyses. Plasma concentrations of isoleucine and glutamate were increased, and glycine and serine concentrations were decreased in individuals with NAFLD. Concentrations of other amino acids were similar between individuals with and without NAFLD, and no clear association was seen between liver fat content and amino acids in the regression analyses. Conclusion: MRS-diagnosed NAFLD in T2D is associated with hyperglucagonaemia and elevated plasma concentrations of isoleucine and glutamate and low plasma concentrations of glycine and serine. Whether NAFLD and glucagon resistance per se induce these changes remains to be elucidated.

7.
Eur J Endocrinol ; 187(4): 507-518, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35977072

Objective: Gastrointestinal-mediated glucose disposal (GIGD) during oral glucose tolerance test (OGTT) reflects the percentage of glucose disposal caused by mechanisms elicited by the oral route of glucose administration. GIGD is reduced in patients with type 2 diabetes (T2D) due to a reduced incretin effect and possibly also due to inappropriate suppression of glucagon after oral glucose. We investigated the effect of glucagon receptor antagonism on GIGD, the incretin effect and glucose excursions in patients with T2D and controls without diabetes. Design: A double-blind, randomised, placebo-controlled crossover study was conducted. Methods: Ten patients with T2D and 10 gender-, age- and BMI-matched controls underwent two 50 g OGTTs and 2 isoglycaemic i.v. glucose infusions, succeeding (~10 h) single-dose administration of 100 mg of the glucagon receptor antagonist LY2409021 or placebo, respectively. Results: Compared to placebo, LY2409021 reduced fasting plasma glucose in patients with T2D and controls. Plasma glucose excursions after oral glucose assessed by baseline-subtracted area under the curve were increased by LY2409021 compared to placebo in both groups, but no effect of LY2409021 on GIGD or the incretin effect was observed. LY2409021 increased fasting glucagon concentrations three-fold compared to placebo concentrations. Conclusions: Glucagon receptor antagonism with LY2409021 had no effect on the impaired GIGD or the impaired incretin effect in patients with T2D and did also not affect these parameters in the controls. Surprisingly, we observed reduced oral glucose tolerance with LY2409021 which may be specific for this glucagon receptor antagonist.


Diabetes Mellitus, Type 2 , Incretins , Biphenyl Compounds , Blood Glucose , Cross-Over Studies , Diabetes Mellitus, Type 2/drug therapy , Glucagon , Glucose , Humans , Incretins/therapeutic use , Insulin , Receptors, Glucagon/therapeutic use
8.
Diabetes Care ; 45(6): 1476-1481, 2022 06 02.
Article En | MEDLINE | ID: mdl-35320361

OBJECTIVE: To investigate the efficacy and safety of dasiglucagon, a novel stable glucagon analog in a liquid formulation, in Roux-en-Y gastric bypass (RYGB)-operated individuals suffering from postbariatric hypoglycemia (PBH). RESEARCH DESIGN AND METHODS: In a randomized, double-blind, placebo-controlled, crossover trial, 10 RYGB-operated participants with continuous glucose monitoring-verified PBH were randomly assigned to 3 trial days, each consisting of a 240-min standardized liquid mixed-meal test with the subcutaneous injection of placebo or 80 µg or 200 µg dasiglucagon. RESULTS: Compared with placebo, treatment with both 80 and 200 µg dasiglucagon raised nadir plasma glucose (PG) (placebo: 3.0 ± 0.2 mmol/L [mean ± SEM]; 80 µg dasiglucagon: 3.9 ± 0.3 mmol/L, P = 0.002; 200 µg dasiglucagon: 4.5 ± 0.2 mmol/L, P = 0.0002) and reduced time in hypoglycemia (PG <3.9 mmol/L) by 70.0 min (P = 0.030 and P = 0.008). CONCLUSIONS: Single-dose administration of dasiglucagon effectively mitigated postprandial hypoglycemia.


Gastric Bypass , Hypoglycemia , Blood Glucose , Blood Glucose Self-Monitoring , Cross-Over Studies , Double-Blind Method , Gastric Bypass/adverse effects , Glucagon/analogs & derivatives , Humans , Hypoglycemia/drug therapy , Hypoglycemia/etiology , Hypoglycemia/prevention & control , Insulin/therapeutic use
9.
Eur J Endocrinol ; 186(6): R93-R111, 2022 Apr 21.
Article En | MEDLINE | ID: mdl-35353712

Type 2 diabetes is a common manifestation of metabolic dysfunction due to obesity and constitutes a major burden for modern health care systems, in concert with the alarming rise in obesity worldwide. In recent years, several successful pharmacotherapies improving glucose metabolism have emerged and some of these also promote weight loss, thus, ameliorating insulin resistance. However, the progressive nature of type 2 diabetes is not halted by these new anti-diabetic pharmacotherapies. Therefore, novel therapies promoting weight loss further and delaying diabetes progression are needed. Amylin, a beta cell hormone, has satiating properties and also delays gastric emptying and inhibits postprandial glucagon secretion with the net result of reducing postprandial glucose excursions. Amylin acts through the six amylin receptors, which share the core component with the calcitonin receptor. Calcitonin, derived from thyroid C cells, is best known for its role in humane calcium metabolism, where it inhibits osteoclasts and reduces circulating calcium. However, calcitonin, particularly of salmon origin, has also been shown to affect insulin sensitivity, reduce the gastric emptying rate and promote satiation. Preclinical trials with agents targeting the calcitonin receptor and the amylin receptors, show improvements in several parameters of glucose metabolism including insulin sensitivity and some of these agents are currently undergoing clinical trials. Here, we review the physiological and pharmacological effects of amylin and calcitonin and discuss the future potential of amylin and calcitonin-based treatments for patients with type 2 diabetes and obesity.


Diabetes Mellitus, Type 2 , Insulin Resistance , Calcitonin/therapeutic use , Calcium/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucose , Humans , Islet Amyloid Polypeptide/therapeutic use , Obesity/drug therapy , Receptors, Calcitonin/therapeutic use , Receptors, Islet Amyloid Polypeptide , Weight Loss
10.
Diabetes Obes Metab ; 24(2): 221-227, 2022 02.
Article En | MEDLINE | ID: mdl-34617375

AIM: To evaluate the efficacy of the short-acting glucagon-like peptide-1 receptor agonist, exenatide, added to insulin therapy in type 1 diabetes on bone mineral density and bone turnover markers. MATERIALS AND METHODS: In a randomized, double-blinded, parallel-group trial, 108 individuals with type 1 diabetes aged 18 years or older on basal-bolus therapy with HbA1c 59-88 mmol/mol (7.5%-10.0%) and body mass index of more than 22.0 kg/m2 were randomized (1:1) to preprandial subcutaneous injection of 10 µg exenatide (Byetta) before breakfast, lunch, and dinner over 26 weeks as add-on treatment to insulin therapy. RESULTS: Exenatide elicited a body weight reduction of 4.4 kg compared with placebo, but no between-group differences in bone mineral density, as assessed by whole-body, hip, lumbar, and forearm dual-energy X-ray absorptiometry following 26 weeks of treatment, were observed. Fasting plasma levels of C-terminal telopeptides of type I collagen, a marker of bone resorption, and amino-terminal propeptide of type I procollagen, a marker of bone formation, were unchanged by exenatide compared with placebo after 26 weeks. CONCLUSIONS: Despite an exenatide-induced body weight reduction, no changes in bone metabolism were observed with exenatide added to insulin therapy in type 1 diabetes after 26 weeks.


Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Adolescent , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Exenatide/therapeutic use , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Venoms/therapeutic use
11.
Eur J Endocrinol ; 186(2): 207-221, 2022 Jan 06.
Article En | MEDLINE | ID: mdl-34863038

OBJECTIVE: Type 2 diabetes (T2D) pathophysiology includes fasting and postprandial hyperglucagonemia, which has been linked to hyperglycemia via increased endogenous glucose production (EGP). We used a glucagon receptor antagonist (LY2409021) and stable isotope tracer infusions to investigate the consequences of hyperglucagonemia in T2D. DESIGN: A double-blinded, randomized, placebo-controlled crossover study was conducted. METHODS: Ten patients with T2D and ten matched non-diabetic controls underwent two liquid mixed meal tests preceded by single-dose administration of LY2409021 (100 mg) or placebo. Double-tracer technique was used to quantify EGP. Antagonist selectivity toward related incretin receptors was determined in vitro. RESULTS: Compared to placebo, LY2409021 lowered the fasting plasma glucose (FPG) from 9.1 to 7.1 mmol/L in patients and from 5.6 to 5.0 mmol/L in controls (both P < 0.001) by mechanisms involving reduction of EGP. Postprandial plasma glucose excursions (baseline-subtracted area under the curve) were unaffected by LY2409021 in patients and increased in controls compared to placebo. Glucagon concentrations more than doubled during glucagon receptor antagonism. The antagonist interfered with both glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide receptors, complicating the interpretation of the postprandial data. CONCLUSIONS: LY2409021 lowered FPG concentrations but did not improve postprandial glucose tolerance after a meal in patients with T2D and controls. The metabolic consequences of postprandial hyperglucagonemia are difficult to evaluate using LY2409021 because of its antagonizing effects on the incretin receptors.


Biphenyl Compounds , Blood Glucose , Diabetes Mellitus, Type 2 , Postprandial Period , Receptors, Glucagon , Adult , Aged , Female , Humans , Male , Middle Aged , Biphenyl Compounds/therapeutic use , Blood Glucose/analysis , Cross-Over Studies , Diabetes Mellitus, Type 2/blood , Double-Blind Method , Fasting , Gastric Inhibitory Polypeptide/blood , Glucagon/blood , Glucagon-Like Peptide 1/blood , Receptors, Glucagon/antagonists & inhibitors
12.
Diabetes ; 2021 Oct 21.
Article En | MEDLINE | ID: mdl-34957488

Hyperglucagonemia is a common observation in both obesity and type 2 diabetes, and the etiology is primarily thought to be hypersecretion of glucagon. We investigated whether altered elimination kinetics of glucagon could contribute to the hyperglucagonemia in type 2 diabetes and obesity. Individuals with type 2 diabetes and preserved kidney function (8 with and 8 without obesity) and matched control individuals (8 with and 8 without obesity) were recruited. Each participant underwent a 1-hour glucagon infusion (4 ng/kg/min), achieving steady-state plasma glucagon concentrations, followed by a 1-hour wash-out period. Plasma levels, the metabolic clearance rate (MCR), half-life (T½) and volume of distribution of glucagon were evaluated and a pharmacokinetic model was constructed. Glucagon MCR and volume of distribution were significantly higher in the type 2 diabetes group compared to the control group, while no significant differences between the groups were found in glucagon T½. Individuals with obesity had neither a significantly decreased MCR, T½, nor volume of distribution of glucagon. In our pharmacokinetic model, glucagon MCR associated positively with fasting plasma glucose and negatively with body weight. In conclusion, our results suggest that impaired glucagon clearance is not a fundamental part of the hyperglucagonemia observed in obesity and type 2 diabetes.

13.
Diabetes ; 2021 Oct 26.
Article En | MEDLINE | ID: mdl-34702780

Hyperglucagonemia is a common observation in both obesity and type 2 diabetes, and the etiology is primarily thought to be hypersecretion of glucagon. We investigated whether altered elimination kinetics of glucagon could contribute to the hyperglucagonemia in type 2 diabetes and obesity. Individuals with type 2 diabetes and preserved kidney function (8 with and 8 without obesity) and matched control individuals (8 with and 8 without obesity) were recruited. Each participant underwent a 1-hour glucagon infusion (4 ng/kg/min), achieving steady-state plasma glucagon concentrations, followed by a 1-hour wash-out period. Plasma levels, the metabolic clearance rate (MCR), half-life (T½) and volume of distribution of glucagon were evaluated and a pharmacokinetic model was constructed. Glucagon MCR and volume of distribution were significantly higher in the type 2 diabetes group compared to the control group, while no significant differences between the groups were found in glucagon T½ Individuals with obesity had neither a significantly decreased MCR, T½, nor volume of distribution of glucagon. In our pharmacokinetic model, glucagon MCR associated positively with fasting plasma glucose and negatively with body weight. In conclusion, our results suggest that impaired glucagon clearance is not a fundamental part of the hyperglucagonemia observed in obesity and type 2 diabetes.

14.
Eur J Endocrinol ; 185(4): R93-R101, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-34370694

In 2008, the first evidence of a new hormone called neuronostatin was published. The hormone was discovered using a bioinformatic method and found to originate from the same preprohormone as somatostatin. This small peptide hormone of 13 amino acids and a C-terminal amidation was soon found to exert pleiotropic physiological effects. In animal studies, neuronostatin has been shown to reduce food intake and delay gastric emptying and gastrointestinal transit. Furthermore, neuronostatin has been shown to affect glucose metabolism by increasing glucagon secretion during situations when glucose concentrations are low. Additionally, neuronostatin has been shown to affect neural tissue and cardiomyocytes by suppressing cardiac contractility. The effects of neuronostatin have not yet been delineated in humans, but if the effects found in animal studies translate to humans it could position neuronostatin as a promising target in the treatment of obesity, hypertension and diabetes. In this review, we describe the discovery of neuronostatin and the current understanding of its physiological role and potential therapeutic applicability.


Peptide Hormones/physiology , Animals , Appetite Regulation/drug effects , Appetite Regulation/genetics , Diabetes Mellitus/genetics , Diabetes Mellitus/therapy , Gastric Emptying/drug effects , Gastric Emptying/genetics , Humans , Hypertension/genetics , Hypertension/therapy , Muscle Contraction/drug effects , Muscle Contraction/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Neurons/drug effects , Neurons/physiology , Obesity/genetics , Obesity/therapy , Peptide Hormones/pharmacology , Signal Transduction/drug effects , Somatostatin/chemistry , Somatostatin/pharmacology , Somatostatin/physiology
15.
Diabet Med ; 38(10): e14655, 2021 10.
Article En | MEDLINE | ID: mdl-34291491

AIMS: The once-weekly administered glucagon-like peptide 1 (GLP-1) receptor agonist (GLP-1RA) semaglutide, has, in clinical trials, demonstrated significant reductions in glycated haemoglobin A1c (HbA1c ) and body weight in persons with type 2 diabetes. We evaluated the real-world clinical effects of semaglutide once weekly in a hospital-based diabetes out-patient clinic. METHODS: This retrospective observational cohort study included persons with type 2 diabetes (n = 119) on a broad range of antidiabetic medicine: GLP-1RA naïve persons (n = 37) and GLP-1RA-experienced persons (n = 82). Person characteristics at inclusion: age [median (quartiles)]: 65 (57, 72) years; body weight 99 (86, 118) kg; body mass index (BMI) 33 (29, 38) kg/m²; HbA1c 61 (54, 69) mmol/mol/(7.7 (7.1, 8.5) %). Data were collected at baseline and after 3, 6 and 12 months of semaglutide treatment. Data were analysed using a general linear mixed model for repeated measurements. RESULTS: After 12 months, the reductions in HbA1c were (mean [95% confidence interval]: GLP-1RA naïve: -12.8 [-17.0, -8.5] mmol/mol/ -1.2 [-1.6, -0.8]% (p < 0.01) and GLP-1RA experienced: -6.4 [-9.0, -3.8] mmol/mol/ -0.6 [-0.8, -0.4]% (p < 0.01), respectively. Body weight reductions in GLP-1RA naïve: -5 [-6.9, -3.1] kg (p < 0.01) and GLP-1RA experienced: -3.2 [-4.4, -2.0] kg (p < 0.01), respectively. Seventy-five percent received 1 mg QW semaglutide. CONCLUSION: We observed effects of semaglutide once weekly on HbA1c and body weight comparable with the effects observed in clinical studies with fewer persons in our cohort receiving maximum dose of semaglutide.


Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptides/administration & dosage , Aged , Diabetes Mellitus, Type 2/blood , Drug Administration Schedule , Female , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptides/pharmacology , Glycated Hemoglobin/metabolism , Humans , Injections, Subcutaneous , Male , Middle Aged , Outpatients , Retrospective Studies , Treatment Outcome
16.
JHEP Rep ; 3(4): 100299, 2021 Aug.
Article En | MEDLINE | ID: mdl-34169247

BACKGROUND & AIMS: Dysbiosis of the gut microbiota in response to an energy-rich Western diet and the potential leak of bacteria and/or bacterial products from the intestine to the liver is perceived as a potential risk factor for the development of non-alcoholic fatty liver disease (NAFLD). We investigated the microbiome in liver biopsies from healthy lean and obese individuals and compared it with their blood microbiome. METHODS: We examined liver biopsies from 15 healthy lean and 14 obese individuals (BMI of 18.5-25 and 30-40 kg/m2, respectively). Bacterial 16S ribosomal DNA (rDNA) was analysed by quantitative polymerase chain reaction (qPCR) and 16S metagenomic sequencing targeting the hypervariable V3-V4 region. Metagenomic analysis was performed using the linear discriminant analysis effect size (LEfSe) algorithm. Data are medians with IQRs in brackets. RESULTS: Histology revealed hepatic steatosis in 13 obese individuals and in 2 lean individuals. A robust signal from qPCR revealed significantly higher amounts of bacterial rDNA copies in liver samples from obese individuals compared with those from lean individuals (148 [118-167] vs. 77 [62-122] 16S copies/ng DNA, p <0.001). Liver biopsies from the obese group were characterised by lower alpha diversity at the phylum level (Shannon index 0.60 [0.55-0.76] vs. 0.73 [0.62-0.90], p = 0.025), and metagenomic profiling revealed a significantly higher proportion of Proteobacteria in this group (81.0% [73.0-82.4%] vs. 74.3% [68.4-78.4%], p = 0.014). CONCLUSIONS: We provide evidence for the presence of bacterial rDNA in the healthy human liver. Based on differences in the hepatic microbiome between obese individuals and healthy lean individuals, we suggest that changes in the liver microbiome could constitute an additional risk factor for the development of NAFLD. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease globally, and new evidence suggests that obesity is associated with a disturbed gut bacterial composition, which may influence the development of NAFLD. We examined the composition of bacterial DNA in liver biopsies from healthy lean and obese individuals and found a different composition of bacterial DNA in liver biopsies from the obese group. We propose that the increased bacterial DNA load in the livers of obese individuals could constitute an early risk factor for the progression of NAFLD. CLINICAL TRIAL NUMBER: NCT02337660.

18.
Diabetes ; 70(6): 1347-1356, 2021 06.
Article En | MEDLINE | ID: mdl-33722838

Hyperglucagonemia is a well-known contributor to diabetic hyperglycemia, and glucagon-like peptide 1 (GLP-1) suppresses glucagon secretion. Reduced inhibitory effects of glucose and GLP-1 on glucagon secretion may contribute to the hyperglucagonemia in diabetes and influence the success of GLP-1 receptor agonist therapy. We examined the dose-response relationship for GLP-1 on glucose-induced glucagon suppression in healthy individuals and patients with type 2 and type 1 diabetes. In randomized order, 10 healthy individuals with normal glucose tolerance, 10 patients with type 2 diabetes, and 9 C-peptide-negative patients with type 1 diabetes underwent 4 separate stepwise glucose clamps (five 30-min steps from fasting level to 15 mmol/L plasma glucose) during simultaneous intravenous infusions of saline or 0.2, 0.4, or 0.8 pmol GLP-1/kg/min. In healthy individuals and patients with type 2 diabetes, GLP-1 potentiated the glucagon-suppressive effect of intravenous glucose in a dose-dependent manner. In patients with type 1 diabetes, no significant changes in glucagon secretion were observed during the clamps whether with saline or GLP-1 infusions. In conclusion, the glucagonostatic potency of GLP-1 during a stepwise glucose clamp is preserved in patients with type 2 diabetes, whereas our patients with type 1 diabetes were insensitive to the glucagonostatic effects of both glucose and GLP-1.


Blood Glucose/drug effects , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Glucagon-Like Peptide 1/pharmacology , Blood Glucose/metabolism , Denmark , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Dose-Response Relationship, Drug , Fasting/blood , Female , Glucagon/blood , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/therapeutic use , Glucose Clamp Technique , Glycated Hemoglobin/drug effects , Glycated Hemoglobin/metabolism , Healthy Volunteers , Humans , Male , Middle Aged , Treatment Outcome
19.
J Clin Endocrinol Metab ; 106(1): 168-173, 2021 01 01.
Article En | MEDLINE | ID: mdl-33053154

CONTEXT: The extent of the glycemic variability in diabetes secondary to total pancreatectomy is not fully understood. OBJECTIVE: To evaluate glycemic variability in totally pancreatectomized (PX) patients and compare it to glycemic variability in hemoglobin A1c (HbA1c)-matched patients with long-standing type 1 diabetes (T1D). DESIGN: A case-control study was performed. SETTING: Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark. PATIENTS OR OTHER PARTICIPANTS: Ten PX patients (mean [SEM]: age 64.3 [9.8] years; body mass index (BMI) 34.4 [5.0] kg/m2; duration of diabetes 3 [2.8] years), 10 HbA1c-matched patients with T1D (63.9 [8.6] years; 24.6 [3.1] kg/m2; 22 [4] years), and 10 gender-, age-, and BMI-matched healthy controls. All patients were managed on multiple daily injections of insulin. INTERVENTION: Continuous glucose monitoring (CGM) (Medtronic MiniMed iPro 2) during 12 consecutive days. MAIN OUTCOME MEASURES: Glycemic variability. RESULTS: HbA1c levels were similar in the PX group and the T1D group. The PX group had greater continuous overall net glycemic action per 60 minutes (CONGA60 min) compared with the T1D group (mean [SEM]: 9.5 [0.3] vs 8.3 [0.2] mmol/L, P < 0.003) and mean plasma glucose values were higher in the PX group (10.6 [0.9] vs 9.0 [0.9] mmol/L, P < 0.001), whereas coefficient of variation for plasma glucose and standard deviation of mean plasma glucose, respectively, were similar in the 2 groups. Time spent below range was not different between the PX and the T1D group (2.3 [0.8] vs 4.5 [0.8]%, P = 0.065), whereas time spent above range was higher in the PX group (51.4 [3.3] vs 37.6 [1.9]%, P < 0.001). CONCLUSIONS: CGM-assessed glycemic variability showed higher CONGA60 min and time spent above range in our PX patients compared with HbA1c-matched T1D patients. This study is registered at www.ClinicalTrials.gov (NCT02944110).


Blood Glucose/analysis , Diabetes Mellitus/blood , Glycemic Control/methods , Pancreatectomy/adverse effects , Aged , Blood Glucose/metabolism , Blood Glucose Self-Monitoring , Case-Control Studies , Denmark , Diabetes Mellitus/diagnosis , Diabetes Mellitus/etiology , Diabetes Mellitus, Type 1/blood , Female , Humans , Male , Middle Aged , Postoperative Complications/blood , Postoperative Complications/diagnosis
20.
Endocr Connect ; 9(12): 1221-1232, 2020 Dec.
Article En | MEDLINE | ID: mdl-33252353

The T allele of TCF7L2 rs7903146 is a common genetic variant associated with type 2 diabetes (T2D), possibly by modulation of incretin action. In this study, we evaluated the effect of the TCF7L2 rs7903146 T allele on the incretin effect and other glucometabolic parameters in normal glucose tolerant individuals (NGT) and participants with T2D. The rs7903146 variant was genotyped in cohorts of 61 NGT individuals (23 were heterozygous (CT) or homozygous (TT) T allele carriers) and 43 participants with T2D (20 with CT/TT). Participants were previously examined by an oral glucose tolerance test (OGTT) and a subsequent isoglycemic intravenous glucose infusion (IIGI). The incretin effect was assessed by quantification of the difference in integrated beta cell secretory responses during the OGTT and IIGI. Glucose and hormonal levels were measured during experimental days, and from these, indices of beta cell function and insulin sensitivity were calculated. No genotype-specific differences in the incretin effect were observed in the NGT group (P = 0.70) or the T2D group (P = 0.68). NGT T allele carriers displayed diminished glucose-dependent insulinotropic polypeptide response during OGTT (P = 0.01) while T allele carriers with T2D were characterized by lower C-peptide AUC after OGTT (P = 0.04) and elevated glucose AUC after OGTT (P = 0.04). In conclusion, our findings do not exclude that this specific TCF7L2 variant increases the risk of developing T2D via diminished incretin effect, but genotype-related defects were not detectable in these cohorts.

...