Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
ACS Appl Mater Interfaces ; 15(41): 48705-48715, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37787495

We have developed a recovery, regeneration, and reapplication process for Nafion, a perfluorinated sulfonic acid (PFSA) ionomer, from end-of-life (EoL) low-temperature proton-exchange membrane (PEM) fuel cells (FCs). Samples of PFSA PEM recovered from EoL membrane-electrode assemblies (MEAs) with a history of close to 19,000 h of operation were recycled by dissolving the polymeric material in ethanol and applying the dissolved PFSA ionomer for producing the ionomer phase of the catalyst layer of new PEMFC cathodes. Structural characterizations show a marginally lower abundance of sulfonic groups for the EoL PEM compared to a fresh sample. Sulfonation of the former was employed to regenerate sulfonic groups to compensate for the lost ones. New gas-diffusion electrodes (GDEs) were prepared with the recycled PFSA ionomer both with and without sulfonation, and MEAs with these GDEs as cathodes were assembled through a state-of-the-art procedure. Electrochemical characterizations of the GDEs and single-cell studies of the MEAs showed that the electrochemical performances of catalyst layers containing recycled PFSA ionomer were at least similar to those containing fresh. Durability studies of the GDEs and MEAs, performed through a three-electrode liquid cell and a single cell, respectively, show the highest durability for the GDE/MEA with PFSA ionomer recycled without applying the sulfonation step. However, the GDE with PFSA ionomer obtained from recycling a re-sulfonated PEM shows a durability comparable to that of the GDE with fresh PFSA ionomer. Hence, PFSA material aged during PEMFC operation may be employed to produce highly functional and durable regenerated PFSA ionomer for PEMFC catalyst layers. The studied process of PFSA ionomer recycling is highly attractive for industrial adoption.

2.
Article En | MEDLINE | ID: mdl-36315079

Here, we report a study on the structural characteristics of membrane electrode assembly (MEA) samples obtained from a low-temperature (LT) polymer electrolyte membrane (PEM) fuel cell (FC) stack subjected to long-term durability testing for ∼18,500 h of nominal operation along with ∼900 on/off cycles accumulated over the operation time, with the total power production being 3.39 kW h/cm2 of MEA and the overall degradation being 87% based on performance loss. The chemical and physical states of the degraded MEAs were investigated through structural characterizations aiming to probe their different components, namely the cathode and anode electrocatalysts, the Nafion ionomer in the catalyst layers (CLs), the gas diffusion layers (GDLs), and the PEM. Surprisingly, X-ray diffraction and electron microscopy studies suggested no significant degradation of the electrocatalysts. Similarly, the cathode and anode GDLs exhibited no significant change in porosity and structure as indicated by BET analysis and helium ion microscopy. Nevertheless, X-ray fluorescence spectroscopy, elemental analysis through a CHNS analyzer, and comprehensive investigations by X-ray photoelectron spectroscopy suggested significant degradation of the Nafion, especially in terms of sulfur content, that is, the abundance of the -SO3- groups responsible for H+ conduction. Hence, the degradation of the Nafion, in both of the CLs and in the PEM, was found to be the principal mechanism for performance degradation, while the Pt/C catalyst degradation in terms of particle size enlargement or mass loss was minimal. The study suggests that under real-life operating conditions, ionomer degradation plays a more significant role than electrocatalyst degradation in LT-PEMFCs, in contrast to many scientific studies under artificial stress conditions. Mitigation of the ionomer degradation must be emphasized as a strategy to improve the PEMFC's durability.

3.
Waste Biomass Valorization ; 12(4): 1815-1827, 2021.
Article En | MEDLINE | ID: mdl-32837663

ABSTRACT: The recovery efficiency of waste valorization processes depends on an interplay of different conditions that are sometimes overlooked. Process optimization by the means of establishing mathematical relations between the process parameters and outputs is a strong tool to identify optimal operating conditions based on experimental data. In this study, the extraction of anthocyanins from chokeberry (Aronia melancocarpa) juice pomace using homogenization in acidified water was selected as a case study for process optimization using response surface methodology. The parameters studied were the citric acid content in the water, the temperature and the liquid-solid ratio. The optimal conditions to maximize both anthocyanin concentration and total anthocyanin content extracted were 1.5 wt% citric acid, 45 °C and 34 g solvent/g fresh pomace. Furthermore, the model developed predicted satisfactorily the overall anthocyanin content and anthocyanin concentration in the extract, as well as the final pH and total dissolved solids. The process optimization performed in this study sets the ground for further process design targeting the production of high-value products from byproducts or biowaste to be used in food ingredients or supplements.

...