Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Sci Rep ; 14(1): 10818, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734772

This study focuses on the effect of an emerging source of waste, lithium iron phosphate (LFP) cathode materials, on the hydrometallurgical recycling of the currently dominant industrial battery waste that is rich in transition metals (Ni, Co, Mn, and Li). The effects of the dosage of LFP, initial acidity, and timing of LFP reductant addition were investigated in sulfuric acid (H2SO4) leaching (t = 3 h, T = 60 °C, ω = 300 rpm). The results showed that addition of LFP increased both transition metal extraction and acid consumption. Further, the redox potential was lowered due to the increased presence of Fe2+. An initial acidity of 2.0 mol/L H2SO4 with acid consumption of 1.3 kg H2SO4/kg black mass provided optimal conditions for achieving a high leaching yield (Co = 100%, Ni = 87.6%, Mn = 91.1%, Li = 100%) and creating process solutions (Co 8.8 g/L, Ni 13.8 g/L, Li 6.7 g/L, Mn 7.6 g/L, P 12.1 g/L) favorable for subsequent hydrometallurgical processing. Additionally, the overall efficiency of H2O2 decreased due to its decomposition by high concentrations of Fe2+ and Mn2+ when H2O2 was added after t = 2 h, leading to only a minor increase in final battery metals extraction levels.

2.
Waste Manag ; 180: 96-105, 2024 May 15.
Article En | MEDLINE | ID: mdl-38564915

The growing electric vehicle industry has increased the demand for raw materials used in lithium-ion batteries (LIBs), raising concerns about material availability. Froth flotation has gained attention as a LIB recycling method, allowing the recovery of low value materials while preserving the chemical integrity of electrode materials. Furthermore, as new battery chemistries such as lithium titanate (LTO) are introduced into the market, strategies to treat mixed battery streams are needed. In this work, laboratory-scale flotation separation experiments were conducted on two model black mass samples: i) a mixture containing a single cathode (i.e., NMC811) and two anode species (i.e., LTO and graphite), simulating a mixed feedstock prior to hydrometallurgical treatment; and ii) a graphite-TiO2 mixture to reflect the expected products after leaching. The results indicate that graphite can be recovered with > 98 % grade from NMC811-LTO-graphite mixtures. Additionally, it was found that flotation kinetics are dependent on the electrode particle species present in the suspension. In contrast, the flotation of graphite from TiO2 resulted in a low grade product (<96 %) attributed to the significant entrainment of ultrafine TiO2 particles. These results suggest that flotation of graphite should be preferably carried out before hydrometallurgical treatment of black mass.


Graphite , Lithium , Recycling/methods , Electric Power Supplies , Ions
3.
Sci Rep ; 14(1): 9538, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664519

Achieving carbon neutrality requires deployment of large-scale renewable energy technologies like solar photovoltaic (PV) panels. Nevertheless, methods to ascertain the overall environmental impacts PVs and further improve their sustainability are under-investigated. In an effort to provide more understanding of this crucial topic, this research focuses on silicon flows-a key element for manufacturing crystalline silicon PVs. Using system dynamics modeling, we conduct a comprehensive environmental cost assessment of the silicon flows used in PVs based on a comparative analysis between the United States and China as the leading global PV manufacturers. Despite the advancement in wafer quality, material usage reductions and overall price decreases achieved in recent decades, our results project a substantial increase in energy and water consumption in China related to Metallurgical Grade Si (MG-Si), Solar Grade Si (SoG-Si) and cell manufacturing by 2030. An approximate 6.5 times increase of energy and water consumption is observed for c-Si cell manufacturing in China between 2010 and 2020. In 2030, increases of 70% in energy consumption and 69% in water use are estimated for Chinese MG-Si and SoG-Si production. The most significant environmental impact is observed in silicon cell and module manufacturing in both countries, particularly concerning GHG, SOx and NOx emissions. This study provides valuable insights into the environmental impacts of these two major solar panel manufacturing countries by examining the silicon life cycle, from production to end-of-life.

4.
Sci Rep ; 13(1): 21445, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38052892

The removal of trivalent iron and aluminum was studied from synthetic Li-ion battery leach solution by phosphate and hydroxide precipitation (pH 2.5-4.25, t = 3 h, T = 60 °C). Phosphate precipitation exhibited both crystal nucleation initiation (pH 2 vs. pH 3) as well as complete (~ 99%) Fe and Al removal at lower pH compared to hydroxide precipitation (pH 3 vs. 3.5). The precipitation time of phosphate was shorter (40 min) than that of hydroxide precipitation (80 min). At pH 4 the loss of valuable metals (Li, Ni, Co) in the precipitate was negligible in the phosphate cake, whereas in the hydroxide process the co-precipitation was 4-5% for Li, Ni and Co. The filtration rate of phosphate precipitate was shown to be significantly faster. The presence of fluoride did not have any notable effect on phosphate precipitation, whereas in hydroxide precipitation, it potentially had a negative effect on aluminum extraction.

5.
Materials (Basel) ; 15(23)2022 Dec 04.
Article En | MEDLINE | ID: mdl-36500145

This research proposes a new hydrometallurgical method for Zn, In, and Ga extraction, along with Fe as a common impurity, from electric arc furnace dust (EAFD), using ionic liquids. EAFD is a metal-containing waste fraction generated in significant amounts during the process of steelmaking from scrap material in an electric arc furnace. With valuable metal recovery as the main goal, two ionic liquids, [Bmim+HSO4-] and [Bmim+Cl-], were studied in conjunction with three oxidants: Fe2(SO4)3, KMnO4, and H2O2. The results indicated that the best combination was [Bmim+HSO4-] with [Fe2(SO4)3]. An experimental series subsequently demonstrated that the combination of 30% v/v [Bmim+HSO4-], 1 g of [Fe2(SO4)3], S/L ratio = 1/20, a 240 min leaching time, and a temperature of 85 °C was optimal, resulting in maximum extractions of 92.7% Zn, 97.4% In, and 17.03% Ga. In addition, 80.2% of the impurity metal Fe was dissolved. The dissolution kinetics of these four elements over a temperature range of 55-85 °C was found to be diffusion controlled. The remaining phases present in the leached residue were low amounts of ZnO, Fe3O4, ZnFe2O4, and traces of Ca(OH)2 and MnO2, and additional sharp peaks indicative of PbSO4 and CaSO4 appeared within the XRD pattern. The intensity of the peaks related to ZnO and Fe3O4 were observed to have decreased considerably during leaching, whereas some of the refractory ZnFe2O4 phase remained. SEM-EDS analysis revealed that the initial EAFD morphology was composed of spherical-shaped fine-grained particle agglomerates, whereas the leached residue was dominated by calcium sulphate (Ca(SO4))-rich needle-shaped crystals. The results clearly demonstrate that [Bmim+HSO4-] is able to extract the target metals due to its acidic properties.

6.
Sci Rep ; 12(1): 7004, 2022 Apr 29.
Article En | MEDLINE | ID: mdl-35487941

Carbon nanotubes (CNTs) play a unique role in the area of flexible conductors as they have remarkably high electrical conductivity and bend easily without deformation. Consequently, CNTs are commonly deposited on substrates as conductive tracks/coatings. Halogenated solvents are often employed to facilitate the deposition process because they dry rapidly due to their high volatility. In this work, we report that halogenated solvents can dope CNTs considerably. The study showed that the use of dichloromethane, chloroform, or bromoform for the CNT deposition significantly impacts the chemical potential of the material, thereby modifying its charge transport characteristics. As a consequence, up to four-fold improvement in electrical conductivity is noted due to doping.

7.
Materials (Basel) ; 15(5)2022 Mar 04.
Article En | MEDLINE | ID: mdl-35269156

Carbon nanotubes (CNTs) have a wide range of unique properties, which have kept them at the forefront of research in recent decades. Due to their electrical and thermal characteristics, they are often evaluated as key components of thermogenerators. One can create thermogenerators exclusively from CNTs, without any metal counterpart, by properly selecting dopants to obtain n- and p-doped CNTs. However, the performance of CNT thermogenerators remains insufficient to reach wide commercial implementation. This study shows that molecular doping and the inclusion of ZnO nanowires (NWs) can greatly increase their application potential. Moreover, prototype modules, based on single-walled CNTs (SWCNTs), ZnO NWs, polyethyleneimine, and triazole, reveal notable capabilities for generating electrical energy, while ensuring fully scalable performance. Upon doping and the addition of ZnO nanowires, the electrical conductivity of pure SWCNTs (211 S/cm) was increased by a factor of three. Moreover, the proposed strategy enhanced the Power Factor values from 18.99 (unmodified SWCNTs) to 34.9 and 42.91 µW/m∙K2 for CNTs triazole and polyethyleneimine + ZnO NWs inclusion, respectively.

8.
Sci Rep ; 11(1): 23283, 2021 Dec 02.
Article En | MEDLINE | ID: mdl-34857788

The role of aluminum concentration and pH in the purification of waste Li-ion battery leach solution was investigated using NaOH and LiOH as neutralization agents ([H2SO4] = 0.313 M, t = 6 h). Solution was prepared from synthetic chemicals to mimic real battery leach solution. Results demonstrate that pH (3.5-5.5) has a significant effect on the precipitation of metals (Fe, Al, Ni, Cu, Co, Mn, and Li), whereas higher temperature (T = 30 and 60 °C) decreases the precipitation pH of metals. Iron and aluminum were both found to precipitate at ca. pH 4 and the presence of aluminum in PLS clearly decreased the separation efficiency of Fe vs. active material metals (Ni, Co, Li). In the absence of dissolved aluminum, Fe precipitated already at pH 3.5 and did not result in the co-precipitation of other metals. Additionally, the Al-free slurry had a superior filtration performance. However, aluminum concentrations of 2 and 4 g/L were found to cause loss of Ni (2-10%), Co (1-2%) and Li (2-10%) to the Fe-Al hydroxide cake at pH 4. The use of LiOH (vs. NaOH) resulted in 50% lower co-precipitation of Ni, Co and Li. Overall, these results demonstrate that hydroxide precipitation can be an effective method to remove iron from battery waste leach solutions at aluminum concentrations of < 2 g/L only. Although the highest level of lithium loss in the cake was found at pH 4, the loss was shown to decrease with increasing pH.

9.
ACS Appl Mater Interfaces ; 13(34): 41034-41045, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-34412473

This study presents a process for preparation of cellulose-lignin barrier coatings for hot-dip galvanized (HDG) steel by aqueous electrophoretic deposition. Initially, a solution of softwood kraft lignin and diethylene glycol monobutyl ether was used to prepare an aqueous dispersion of colloidal lignin particles (CLPs) via solvent exchange. Analysis of the dispersion showed that it comprised submicron particles (D = 146 nm) with spherical morphologies and colloidal stability (ζ-potential = -40 mV). Following successful formation, the CLP dispersion was mixed with a suspension of TEMPO-oxidized cellulose nanofibers (TOCN, 1 and 2 g·L-1) at a fixed volumetric ratio (1:1, TOCN-CLPs), and biopolymers were deposited onto HDG steel surfaces at different potentials (0.5 and 3 V). The effects of these variables on coating formation, dry adhesion, and electrochemical properties (3.5% NaCl) were investigated. The scanning electron microscopy results showed that coalescence of CLPs occurs during the drying of composite coatings, resulting in formation of a barrier layer on HDG steel. The scanning vibrating electrode technique results demonstrated that the TOCN-CLP layers reduced the penetration of the electrolyte (3.5% NaCl) to the metal-coating interface for at least 48 h of immersion, with a more prolonged barrier performance for 3 V-deposited coatings. Additional electrochemical impedance spectroscopy studies showed that all four coatings provided increased levels of charge transfer resistance (Rct)-compared to bare HDG steel-although coatings deposited at a higher potential (3 V) and a higher TOCN concentration provided the maximum charge transfer resistance after 15 days of immersion (13.7 cf. 0.2 kΩ·cm2 for HDG steel). Overall, these results highlight the potential of TOCN-CLP biopolymeric composites as a basis for sustainable corrosion protection coatings.


Cellulose/chemistry , Lignin/chemistry , Nanofibers/chemistry , Steel/chemistry , Corrosion , Electric Capacitance , Oxidation-Reduction/drug effects , Surface Properties
10.
Sensors (Basel) ; 21(14)2021 Jul 19.
Article En | MEDLINE | ID: mdl-34300653

Promising electrical properties of single-walled carbon nanotubes (SWCNTs) open a spectrum of applications for this material. As the SWCNT electronic characteristics respond well to the presence of various analytes, this makes them highly sensitive sensors. In this contribution, selected organophosphorus compounds were detected by studying their impact on the electronic properties of the nanocarbon network. The goal was to untangle the n-doping mechanism behind the beneficial effect of organic phosphine derivatives on the electrical conductivity of SWCNT networks. The highest sensitivity was obtained in the case of the application of 1,6-Bis(diphenylphoshpino)hexane. Consequently, free-standing SWCNT films experienced a four-fold improvement to the electrical conductivity from 272 ± 21 to 1010 ± 44 S/cm and an order of magnitude increase in the power factor. This was ascribed to the beneficial action of electron-rich phenyl moieties linked with a long alkyl chain, making the dopant interact well with SWCNTs.


Nanotubes, Carbon , Electric Conductivity , Organophosphorus Compounds
11.
J Hazard Mater ; 402: 123561, 2021 01 15.
Article En | MEDLINE | ID: mdl-32769004

A combined low-temperature-roasting and water-washing process is investigated as a hazard-free method to treat electrolytic manganese residue (EMR) and recover manganese. In this study, the phase transformation characteristics and a thermodynamics analysis of the low temperature roasting process of EMR are evaluated. In addition, the effects of temperature and time on the phase transformation of EMR in the roasting process and the washing characteristics of roasted EMR samples are also investigated. Results reveal that some unstable phases within EMR are transformed into more stable phases depending on the treatment time/temperature conditions used and EMR roasted for 60 min at 600 °C (R60min/600°C) exhibit the highest rate of manganese recovery, 67.12 %. After 25 min of deionized water washing, the concentration of manganese in solution from R60min/600°C material become stable, whereas after 6 washing cycles the concentration of manganese in the solution is < 0.005 g/L. The R60min/600°C material with three wash cycles results in a manganese-water solution concentration that is suitable for use in electrolytic manganese metal production. Finally, toxicity leaching tests show that the concentrations of ions present in the leaching solution are all lower than the regulatory limits mandated by the Chinese Integrated Wastewater Discharge Standard GB 8978-1996.

12.
Sci Rep ; 10(1): 19190, 2020 Nov 05.
Article En | MEDLINE | ID: mdl-33154499

Large amounts of industrial metal containing process and waste solutions are a growing issue. In this work, we demonstrated that they could be transformed into materials of high added values such as copper-nickel nanowires (CuNi NWs) by simple chemical reduction. A thorough investigation of the parameter space was conducted. The microstructure of the obtained material was found tunable depending on the employed concentration of precursor, reducing agent, capping agent, pH, temperature, and reaction time. Moreover, the obtained product had a strong magnetic character, which enabled us to separate it from the reaction medium with ease. The results open new perspectives for materials science by proposing a new type of nanostructure: composite NWs of very promising properties, with metallic elements originating directly from industrial process solution.

13.
Waste Manag ; 95: 604-611, 2019 Jul 15.
Article En | MEDLINE | ID: mdl-31351647

Industrially produced spent lithium-ion batteries (LIBs) waste contain not only strategic metals such as cobalt and lithium but also impurity elements like copper, aluminum and iron. The current work investigates the distribution of the metallic impurity elements in LIBs waste, and their influence on the acid dissolution of target active materials. The results demonstrate that the presence of these, naturally reductive, impurity elements (e.g. Cu, Al, and Fe) can substantially promote the dissolution of active materials. Through the addition of Cu and Al-rich larger size fractions, the extraction efficiencies of Co and Li increased up to over 99%, to leave a leach residue that is rich in graphite. By this method, the use of high cost reductants like hydrogen peroxide or ascorbic acid could be avoided. More importantly, additional Co and Li associated with the Cu and Al electrode materials could be also recovered. This novel approach contributes not only to improved reduction efficiency in LIBs waste leaching, but also to improved total recovery of Co and Li from LIBs waste, even from the larger particle size fractions, which are typically lost from circulation.


Lithium , Recycling , Electric Power Supplies , Electrodes , Metals
14.
Waste Manag ; 87: 43-50, 2019 Mar 15.
Article En | MEDLINE | ID: mdl-31109544

Currently, the first generation of solar panels are reaching their end-of-life, however so far, there is no best available technology (BAT) to deal with solar panel waste in terms of the optimized circular economy of metals. In this brief communication, electro-hydraulic fragmentation (EHF) is explored as an initial conditioning stage of photovoltaic (PV) modules to facilitate the recovery of valuable metals with the main goal to produce liberated fractions that are suitable for the retrieval of materials like Si, Ag, Cu, Sn, Pb, and Al. When compared to traditional crushing, the results suggest that dismantling of PV panels using EHF shows more selectivity by concentrating metals among well-defined particle size fractions. Using this method, the subsequent recovery of metals from PV panels can be achieved in a straightforward manner by simple means like sieving. The fragmentation achievable with EHF technology allowed approximately 99% Cu, 60% Ag, 80% of Pb, Sn and Al total elemental weight within the solar panels to be concentrated solely within the >4 mm size range, whereas high purity (>99%) Si could be found in the fractions between >0.50 mm and <2 mm. To the best of the authors' knowledge, this paper presents for the first time a comparative analysis on the use of EHF technique and conventional crushing for the processing of PV solar panel waste.


Electronic Waste , Aluminum , Metals , Recycling
15.
ACS Sustain Chem Eng ; 6(11): 14631-14640, 2018 Nov 05.
Article En | MEDLINE | ID: mdl-30416892

In the current study, platinum-present as a negligible component (below 1 ppb, the detection limit of the HR-ICP-MS at the dilutions used) in real industrial hydrometallurgical process solutions-was recovered by an electrodeposition-redox replacement (EDRR) method on pyrolyzed carbon (PyC) electrode, a method not earlier applied to metal recovery. The recovery parameters of the EDRR process were initially investigated using a synthetic nickel electrolyte solution ([Ni] = 60 g/L, [Ag] = 10 ppm, [Pt] = 20 ppm, [H2SO4] = 10 g/L), and the results demonstrated an extraordinary increase of 3 × 105 in the [Pt]/[Ni] on the electrode surface cf. synthetic solution. EDRR recovery of platinum on PyC was also tested with two real industrial process solutions that contained a complex multimetal solution matrix: Ni as the major component (>140 g/L) and very low contents of Pt, Pd, and Ag (i.e., <1 ppb, 117 and 4 ppb, respectively). The selectivity of Pt recovery by EDRR on the PyC electrode was found to be significant-nanoparticles deposited on the electrode surface comprised on average of 90 wt % platinum and a [Pt]/[Ni] enrichment ratio of 1011 compared to the industrial hydrometallurgical solution. Furthermore, other precious metallic elements like Pd and Ag could also be enriched on the PyC electrode surface using the same methodology. This paper demonstrates a remarkable advancement in the recovery of trace amounts of platinum from real industrial solutions that are not currently considered as a source of Pt metal.

16.
Waste Manag ; 76: 242-249, 2018 Jun.
Article En | MEDLINE | ID: mdl-29615279

The use of lithium-ion batteries (LIB) has grown significantly in recent years, making them a promising source of secondary raw materials due to their rich composition of valuable materials such as Co, Ni and Al. However, the high voltage and reactive components of LIBs pose safety hazards during crushing stages in recycling processes, and during storage and transportation. Electrochemical discharge by immersion of spent batteries in salt solutions has been generally accepted as a robust and straightforward discharging step to address these potential hazards. Nonetheless, there is no clear evidence in the literature to support the use of electrochemical discharge in real systems, neither are there clear indications of the real-world limitations of this practice. To that aim, this work presents a series of experiments systematically conducted to study the behavior of LIBs during electrochemical discharge in salt solutions. In the first part of this study, a LIB sample was discharged ex-situ using Pt wires connected to the battery poles and submerged into the electrolyte solution on the opposite end. The evolution of voltage in the battery was measured for solutions of NaCl, NaSO4, FeSO4, and ZnSO4. The results indicate that, among the electrolytes used in the present study, NaCl solution is the most effective for LIBs discharge. The discharge of LIB using sulfate salts is however only possible with the aid of stirring, as deposition of solid precipitated on the electrodes hinder the electrochemical discharge. Furthermore, it was found that the addition of particulates of Fe or Zn as sacrificial metal further enhances the discharging rate, likely due to an increased contact area with the electrolyte solution. While these findings support the idea of using electrochemical discharge as a pre-treatment of LIBs, severe corrosion of the battery poles was observed upon direct immersion of batteries into electrolyte solutions. Prevention of such corrosion requires further research efforts, perhaps focused on a new design-for-recycling approach of LIBs.


Electric Power Supplies , Electronic Waste , Recycling , Electrodes , Ions , Lithium
17.
Waste Manag ; 76: 582-590, 2018 Jun.
Article En | MEDLINE | ID: mdl-29510945

Recycling of valuable metals from secondary resources such as waste Li-ion batteries (LIBs) has recently attracted significant attention due to the depletion of high-grade natural resources and increasing interest in the circular economy of metals. In this article, the sulfuric acid leaching of industrially produced waste LIBs scraps with 23.6% cobalt (Co), 3.6% lithium (Li) and 6.2% copper (Cu) was investigated. The industrially produced LIBs scraps were shown to provide higher Li and Co leaching extractions compared to dissolution of corresponding amount of pure LiCoO2. In addition, with the addition of ascorbic acid as reducing agent, copper extraction showed decrease, opposite to Co and Li. Based on this, we propose a new method for the selective leaching of battery metals Co and Li from the industrially crushed LIBs waste at high solid/liquid ratio (S/L) that leaves impurities like Cu in the solid residue. Using ascorbic acid (C6H8O6) as reductant, the optimum conditions for LIBs leaching were found to be T = 80 °C, t = 90 min, [H2SO4] = 2 M, [C6H8O6] = 0.11 M and S/L = 200 g/L. This resulted in leaching efficiencies of 95.7% for Li and 93.8% for Co, whereas in contrast, Cu extraction was only 0.7%. Consequently, the proposed leaching method produces a pregnant leach solution (PLS) with high Li (7.0 g/L) and Co (44.4 g/L) concentration as well as a leach residue rich in Cu (up to 12 wt%) that is suitable as a feed fraction for primary or secondary copper production.


Cobalt/chemistry , Electronic Waste , Lithium/chemistry , Recycling , Electric Power Supplies , Sulfuric Acids/chemistry
18.
Waste Manag ; 71: 381-389, 2018 Jan.
Article En | MEDLINE | ID: mdl-29110941

In NiMH battery leaching, rare earth element (REE) precipitation from sulfate media is often reported as being a result of increasing pH of the pregnant leach solution (PLS). Here we demonstrate that this precipitation is a phenomenon that depends on both Na+ and SO42- concentrations and not solely on pH. A two-stage leaching for industrially crushed NiMH waste is performed: The first stage consists of H2SO4 leaching (2 M H2SO4, L/S = 10.4, V = 104 ml, T = 30 °C) and the second stage of H2O leaching (V = 100 ml, T = 25 °C). Moreover, precipitation experiments are separately performed as a function of added Na2SO4 and H2SO4. During the precipitation, higher than stoichiometric quantities of Na to REE are utilized and this increase in both precipitation reagent concentrations results in an improved double sulfate precipitation efficiency. The best REE precipitation efficiencies (98-99%) - achieved by increasing concentrations of H2SO4 and Na2SO4 by 1.59 M and 0.35 M, respectively - results in a 21.8 times Na (as Na2SO4) and 58.3 times SO4 change in stoichiometric ratio to REE. Results strongly indicate a straightforward approach for REE recovery from NiMH battery waste without the need to increase the pH of PLS.


Electronic Waste , Sulfuric Acids/chemistry , Alkalies , Lanthanoid Series Elements/chemistry , Nickel , Sulfates
...