Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nat Commun ; 15(1): 890, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291059

RESUMEN

Type 2 diabetes (T2D)-related fragility fractures represent an increasingly tough medical challenge, and the current treatment options are limited. Mechanical loading is essential for maintaining bone integrity, although bone mechano-responsiveness in T2D remains poorly characterized. Herein, we report that exogenous cyclic loading-induced improvements in bone architecture and strength are compromised in both genetically spontaneous and experimentally-induced T2D mice. T2D-induced reduction in bone mechano-responsiveness is directly associated with the weakened Ca2+ oscillatory dynamics of osteocytes, although not those of osteoblasts, which is dependent on PPARα-mediated specific reduction in osteocytic SERCA2 pump expression. Treatment with the SERCA2 agonist istaroxime was demonstrated to improve T2D bone mechano-responsiveness by rescuing osteocyte Ca2+ dynamics and the associated regulation of osteoblasts and osteoclasts. Moreover, T2D-induced deterioration of bone mechano-responsiveness is blunted in mice with osteocytic SERCA2 overexpression. Collectively, our study provides mechanistic insights into T2D-mediated deterioration of bone mechano-responsiveness and identifies a promising countermeasure against T2D-associated fragility fractures.


Asunto(s)
Diabetes Mellitus Tipo 2 , Osteocitos , Animales , Ratones , Huesos , Calcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Osteoblastos/metabolismo , Osteocitos/metabolismo
2.
Front Microbiol ; 14: 1268701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901817

RESUMEN

Acute high-altitude hypoxia can lead to intestinal damage and changes in gut microbiota. Sustained and reliable oxygen enrichment can resist hypoxic damage at high altitude to a certain extent. However, it remains unclear whether oxygen enrichment can protect against gut damage and changes in intestinal flora caused by acute altitude hypoxia. For this study, eighteen male Sprague-Dawley rats were divided into three groups, control (NN), hypobaric hypoxic (HH), and oxygen-enriched (HO). The NN group was raised under normobaric normoxia, whereas the HH group was placed in a hypobaric hypoxic chamber simulating 7,000 m for 3 days. The HO group was exposed to oxygen-enriched air in the same hypobaric hypoxic chamber as the HH group for 12 h daily. Our findings indicate that an acute HH environment caused a fracture of the crypt structure, loss of epithelial cells, and reduction in goblet cells. Additionally, the structure and diversity of bacteria decreased in richness and evenness. The species composition at Phylum and Genus level was characterized by a higher ratio of Firmicutes and Bacteroides and an increased abundance of Lactobacillus with the abundance of Prevotellaceae_NK3B31_group decreased in the HH group. Interestingly, after oxygen enrichment intervention, the intestinal injury was significantly restrained. This was confirmed by an increase in the crypt depth, intact epithelial cell morphology, increased relative density of goblet cells, and higher evenness and richness of the gut microbiota, Bacteroidetes and Prevotellaceae as the main microbiota in the HO group. Finally, functional analysis showed significant differences between the different groups with respect to different metabolic pathways, including Amino acid metabolism, energy metabolism, and metabolism. In conclusion, this study verifies, for the first time, the positive effects of oxygen enrichment on gut structure and microbiota in animals experiencing acute hypobaric hypoxia.

3.
iScience ; 26(9): 107605, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664634

RESUMEN

Bone stress injuries are common overuse injuries, especially in soldiers, athletes, and performers. In contrast to various post-injury treatments, early protection against bone stress injuries can provide greater benefit. This study explored the early protection strategies against bone stress injuries by mobilization of endogenous targeted bone remodeling. The effects of various pharmaceutical/biophysical approaches, individual or combinational, were investigated by giving intervention before fatigue loading. We optimized the dosage and administration parameters and found that early intervention with pulsed electromagnetic field and parathyroid hormone (i.e., PEMF+PTH) resulted in the most pronounced protective effects among all the approaches against the bone stress injuries. In addition, the mechanisms by which the strategy mobilizes targeted bone remodeling and enhances the self-repair capacity of bone were systematically investigated. This study proposes strategies to reduce the incidence of bone stress injuries in high-risk populations (e.g., soldiers and athletes), particularly for those before sudden increased physical training.

4.
Biomed Eng Online ; 22(1): 51, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217972

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, and is related to disturbed lipid metabolism and redox homeostasis. However, a definitive drug treatment has not been approved for this disease. Studies have found that electromagnetic fields (EMF) can ameliorate hepatic steatosis and oxidative stress. Nevertheless, the mechanism remains unclear. METHODS: NAFLD models were established by feeding mice a high-fat diet. Simultaneously, EMF exposure is performed. The effects of the EMF on hepatic lipid deposition and oxidative stress were investigated. Additionally, the AMPK and Nrf2 pathways were analysed to confirm whether they were activated by the EMF. RESULTS: Exposure to EMF decreased the body weight, liver weight and serum triglyceride (TG) levels and restrained the excessive hepatic lipid accumulation caused by feeding the HFD. The EMF boosted CaMKKß protein expression, activated AMPK phosphorylation and suppressed mature SREBP-1c protein expression. Meanwhile, the activity of GSH-Px was enhanced following an increase in nuclear Nrf2 protein expression by PEMF. However, no change was observed in the activities of SOD and CAT. Consequently, EMF reduced hepatic reactive oxygen species (ROS) and MDA levels, which means that EMF relieved liver damage caused by oxidative stress in HFD-fed mice. CONCLUSIONS: EMF may activate the CaMKKß/AMPK/SREBP-1c and Nrf2 pathways to control hepatic lipid deposition and oxidative stress. This investigation indicates that EMF may be a novel therapeutic method for NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Dieta Alta en Grasa , Campos Electromagnéticos , Lípidos , Hígado , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Fosforilación , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
5.
J Bone Miner Res ; 38(4): 597-614, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36680558

RESUMEN

Chronic high-altitude hypoxia induces irreversible abnormalities in various organisms. Emerging evidence indicates that hypobaric hypoxia markedly suppresses bone mass and bone strength. However, few effective means have been identified to prevent such bone deficits. Here, we assessed the potential of pulsed electromagnetic fields (PEMFs) to noninvasively resist bone deterioration induced by hypobaric hypoxia. We observed that exogenous PEMF treatment at 15 Hz and 20 Gauss (Gs) improved the cancellous and cortical bone mass, bone microstructure, and skeletal mechano-properties in rats subjected to chronic exposure of hypobaric hypoxia simulating an altitude of 4500 m for 6 weeks by primarily modulating osteoblasts and osteoblast-mediated bone-forming activity. Moreover, our results showed that whereas PEMF stimulated the functional activity of primary osteoblasts in hypoxic culture in vitro, it had negligible effects on osteoclasts and osteocytes exposed to hypoxia. Mechanistically, the primary cilium was found to function as the major electromagnetic sensor in osteoblasts exposed to hypoxia. The polycystins PC-1/PC-2 complex was identified as the primary calcium channel in the primary cilium of hypoxia-exposed osteoblastic cells responsible for the detection of external PEMF signals, and thereby translated these biophysical signals into intracellular biochemical events involving significant increase in the intracellular soluble adenylyl cyclase (sAC) expression and subsequent elevation of cyclic adenosine monophosphate (cAMP) concentration. The second messenger cAMP inhibited the transcription of oxygen homeostasis-related hypoxia-inducible factor 1-alpha (HIF-1α), and thus enhanced osteoblast differentiation and improved bone phenotype. Overall, the present study not only advances our understanding of bone physiology at high altitudes, but more importantly, proposes effective means to ameliorate high altitude-induced bone loss in a noninvasive and cost-effective manner. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Mal de Altura , Ratas , Animales , Mal de Altura/metabolismo , Campos Electromagnéticos , Cilios , Huesos , Hipoxia/complicaciones , Hipoxia/metabolismo , Osteoblastos/metabolismo , AMP Cíclico/metabolismo
6.
J Clin Invest ; 133(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36512405

RESUMEN

Disuse osteoporosis is a metabolic bone disease resulting from skeletal unloading (e.g., during extended bed rest, limb immobilization, and spaceflight), and the slow and insufficient bone recovery during reambulation remains an unresolved medical challenge. Here, we demonstrated that loading-induced increase in bone architecture/strength was suppressed in skeletons previously exposed to unloading. This reduction in bone mechanosensitivity was directly associated with attenuated osteocytic Ca2+ oscillatory dynamics. The unloading-induced compromised osteocytic Ca2+ response to reloading resulted from the HIF-1α/PDK1 axis-mediated increase in glycolysis, and a subsequent reduction in ATP synthesis. HIF-1α also transcriptionally induced substantial glutaminase 2 expression and thereby glutamine addiction in osteocytes. Inhibition of glycolysis by blockade of PDK1 or glutamine supplementation restored the mechanosensitivity in those skeletons with previous unloading by fueling the tricarboxylic acid cycle and rescuing subsequent Ca2+ oscillations in osteocytes. Thus, we provide mechanistic insight into disuse-induced deterioration of bone mechanosensitivity and a promising therapeutic approach to accelerate bone recovery after long-duration disuse.


Asunto(s)
Calcio , Glutamina , Calcio/metabolismo , Glutamina/farmacología , Glutamina/metabolismo , Osteocitos/metabolismo , Glucosa/metabolismo , Metabolismo Energético
7.
Neuroscience ; 513: 64-75, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36395917

RESUMEN

Memory impairment is one of the neuropsychological effects of hypobaric hypoxia (HH), which can be associated with programmed cell death, such as apoptosis and ferroptosis. Emerging evidence indicates crosstalk between apoptosis and ferroptosis, while the crosstalk between HH-induced apoptosis and ferroptosis in the hippocampus has not been clarified. Here, microarray profiles were extracted to analyze the differentially expressed genes with and without HH exposure, and keratin 18 (Krt18) was found to be a potential gene related to both apoptosis and ferroptosis. Then, we conducted morphological observations that showed that apoptosis and ferroptosis coexisted in the rat hippocampus after HH exposure. Combined with the real-time q-PCR analysis, the mRNA expression of Krt18 decreased significantly after HH exposure for 1 day and 3 days, and Mapk10 (JNK3) was upregulated at the corresponding time points. After exposure for 7 days, Krt18 and JNK3 showed no significant change. In conclusion, Krt18 may regulate apoptosis and ferroptosis simultaneously, possibly via the JNK signaling pathway, which might provide a potential central target for apoptosis and ferroptosis in hippocampal injury after HH exposure.


Asunto(s)
Ferroptosis , Ratas , Animales , Ratas Sprague-Dawley , Queratina-18/metabolismo , Queratina-18/farmacología , Hipoxia/metabolismo , Apoptosis , Hipocampo/metabolismo
8.
Front Hum Neurosci ; 16: 906735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36393985

RESUMEN

Mental fatigue (MF) jeopardizes performance and safety through a variety of cognitive impairments and according to the complexity loss theory, should represent "complexity loss" in electroencephalogram (EEG). However, the studies are few and inconsistent concerning the relationship between MF and loss of complexity, probably because of the susceptibility of brain waves to noise. In this study, MF was induced in thirteen male college students by a simulated flight task. Before and at the end of the task, spontaneous EEG and auditory steady-state response (ASSR) were recorded and instantaneous frequency variation (IFV) in alpha rhythm was extracted and analyzed by multiscale entropy (MSE) analysis. The results show that there were significant differences in IFV in alpha rhythm either from spontaneous EEG or from ASSR for all subjects. Therefore, the proposed method can be effective in revealing the complexity loss caused by MF in spontaneous EEG and ASSR, which may serve as a promising analyzing method to mark mild mental impairments.

9.
J Mol Neurosci ; 72(10): 2150-2161, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36048344

RESUMEN

Intracerebral hemorrhage causes high mortality and morbidity, but its therapy methods are limited. In the present study, pulsed electromagnetic field (PEMF) was demonstrated to have beneficial effects on an intracerebral hemorrhage (ICH) model. This study explored the effects and underlying mechanisms of PEMF in a mouse model of ICH and cultured BV2 cells. PEMF was applied 4 hours after collagenase-induced ICH at day 0 and 4 hours per day for seven consecutive days. The expression levels of proinflammatory factors were assessed by ELISA kits and western blotting. Hematoma volume was measured by histological analysis. The effects of PEMF on phagocytosis of the erythrocytes were observed in cultured BV2 cells and ICH mouse models. Seven days after ICH, the hematoma volume was significantly reduced in PEMF-treated animals compared to nontreated mice. We found that PEMF decreased the hematoma volume and the expression levels of proinflammatory factors after ICH. Moreover, PEMF enhanced the erythrophagocytosis of microglia via CD36. Furthermore, we found that downregulation CD36 with Genistein blocked the effects of PEMF-induced hematoma clearance and anti-inflammations effects. Thus, the PEMF-mediated promotion of neurological functions may at least partly involve anti-inflammatory processes and hematoma clearance. These results suggest that PEMF treatment promoted the hematoma clearance and alleviated the inflammation after ICH.


Asunto(s)
Lesiones Encefálicas , Campos Electromagnéticos , Animales , Ratones , Genisteína/metabolismo , Genisteína/farmacología , Genisteína/uso terapéutico , Hemorragia Cerebral/metabolismo , Hematoma/terapia , Hematoma/tratamiento farmacológico , Antígenos CD36/metabolismo , Antígenos CD36/uso terapéutico , Microglía/metabolismo , Lesiones Encefálicas/etiología , Lesiones Encefálicas/terapia , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología
10.
Sci Adv ; 8(34): eabq0222, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36001662

RESUMEN

Radiotherapy increases tumor cure and survival rates; however, radiotherapy-induced bone damage remains a common issue for which effective countermeasures are lacking, especially considering tumor recurrence risks. We report a high-specificity protection technique based on noninvasive electromagnetic field (EMF). A unique pulsed-burst EMF (PEMF) at 15 Hz and 2 mT induces notable Ca2+ oscillations with robust Ca2+ spikes in osteoblasts in contrast to other waveforms. This waveform parameter substantially inhibits radiotherapy-induced bone loss by specifically modulating osteoblasts without affecting other bone cell types or tumor cells. Mechanistically, primary cilia are identified as major PEMF sensors in osteoblasts, and the differentiated ciliary expression dominates distinct PEMF sensitivity between osteoblasts and tumor cells. PEMF-induced unique Ca2+ oscillations depend on interactions between ciliary polycystins-1/2 and endoplasmic reticulum, which activates the Ras/MAPK/AP-1 axis and subsequent DNA repair Ku70 transcription. Our study introduces a previously unidentified method against radiation-induced bone damage in a noninvasive, cost-effective, and highly specific manner.

11.
Braz J Med Biol Res ; 54(12): e11550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34730682

RESUMEN

Following radiotherapy, patients have decreased bone mass and increased risk of fragility fractures. Diabetes mellitus (DM) is also reported to have detrimental effects on bone architecture and quality. However, no clinical or experimental study has systematically characterized the bone phenotype of the diabetic patients following radiotherapy. After one month of streptozotocin injection, three-month-old male rats were subjected to focal radiotherapy (8 Gy, twice, at days 1 and 3), and then bone mass, microarchitecture, and turnover as well as bone cell activities were evaluated at 2 months post-irradiation. Micro-computed tomography results demonstrated that DM rats exhibited greater deterioration in trabecular bone mass and microarchitecture following irradiation compared with the damage to bone structure induced by DM or radiotherapy. The serum biochemical, bone histomorphometric, and gene expression assays revealed that DM combined with radiotherapy showed lower bone formation rate, osteoblast number on bone surface, and expression of osteoblast-related markers (ALP, Runx2, Osx, and Col-1) compared with DM or irradiation alone. DM plus irradiation also caused higher bone resorption rate, osteoclast number on bone surface, and expression of osteoclast-specific markers (TRAP, cathepsin K, and calcitonin receptor) than DM or irradiation treatment alone. Moreover, lower osteocyte survival and higher expression of Sost and DKK1 genes (two negative modulators of Wnt signaling) were observed in rats with combined DM and radiotherapy. Together, these findings revealed a higher deterioration of the diabetic skeleton following radiotherapy, and emphasized the clinical importance of health maintenance.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Huesos , Humanos , Masculino , Osteogénesis , Ratas , Estreptozocina , Microtomografía por Rayos X
12.
High Alt Med Biol ; 22(3): 274-284, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34348049

RESUMEN

Cai, Jing, Junyong Ruan, Xi Shao, Yuanjun Ding, Kangning Xie, Chi Tang, Zedong Yan, Erping Luo, and Da Jing. Oxygen enrichment mitigates high-altitude hypoxia-induced hippocampal neurodegeneration and memory dysfunction associated with attenuated tau phosphorylation. High Alt Med Biol. 22:274-284, 2021. Background: Brain is predominantly vulnerable to high-altitude hypoxia (HAH), resulting in neurodegeneration and cognitive impairment. The technology of oxygen enrichment has proven effective to decrease the heart rate and improve the arterial oxygen saturation by reducing the equivalent altitude. However, the efficacy of oxygen enrichment on HAH-induced cognitive impairments remains controversial based on the results of neuropsychological tests, and its role in HAH-induced hippocampal morphological and molecular changes remains unknown. Therefore, this study aims to systematically investigate the effects of oxygen enrichment on the memory dysfunction and hippocampal neurodegeneration caused by HAH. Materials and Methods: Fifty-one male Sprague-Dawley rats were equally assigned to three groups: normal control, HAH, and HAH with oxygen enrichment (HAHO). Rats in the HAH and HAHO groups were exposed to hypoxia for 3 days in a hypobaric hypoxia chamber at a simulated altitude of 6,000 m. Rats in the HAHO group were supplemented with oxygen-enriched air, with 12 hours/day in the hypobaric hypoxia chamber. Results: Our results showed that oxygen enrichment improved the locomotor activity of HAH-exposed rats. The Morris water maze test revealed that oxygen enrichment significantly ameliorated HAH-induced spatial memory deficits. Oxygen enrichment also improved morphological alterations of pyramidal cells and the ultrastructure of neurons in the hippocampal CA1 region in rats exposed to acute HAH. Tau hyperphosphorylation at Ser396, Ser262, Thr231, and Thr181 was also significantly attenuated by oxygen enrichment in HAH-exposed rats. Conclusions: Together, our study reveals that oxygen enrichment can ameliorate HAH-induced cognitive impairments associated with improved hippocampal morphology and molecular expression, and highlights that oxygen enrichment may become a promising alternative treatment against neurodegeneration for humans ascending to the plateau.


Asunto(s)
Mal de Altura , Mal de Altura/complicaciones , Mal de Altura/terapia , Animales , Hipocampo , Hipoxia/complicaciones , Hipoxia/terapia , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/terapia , Oxígeno , Fosforilación , Ratas , Ratas Sprague-Dawley
13.
Am J Physiol Endocrinol Metab ; 320(5): E951-E966, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719588

RESUMEN

Type 2 diabetes mellitus (T2DM) results in compromised bone microstructure and quality, and subsequently increased risks of fractures. However, it still lacks safe and effective approaches resisting T2DM bone fragility. Pulsed electromagnetic fields (PEMFs) exposure has proven to be effective in accelerating fracture healing and attenuating osteopenia/osteoporosis induced by estrogen deficiency. Nevertheless, whether and how PEMFs resist T2DM-associated bone deterioration remain not fully identified. The KK-Ay mouse was used as the T2DM model. We found that PEMF stimulation with 2 h/day for 8 wk remarkably improved trabecular bone microarchitecture, decreased cortical bone porosity, and promoted trabecular and cortical bone material properties in KK-Ay mice. PEMF stimulated bone formation in KK-Ay mice, as evidenced by increased serum levels of bone formation (osteocalcin and P1NP), enhanced bone formation rate, and increased osteoblast number. PEMF significantly suppressed osteocytic apoptosis and sclerostin expression in KK-Ay mice. PEMF exerted beneficial effects on osteoblast- and osteocyte-related gene expression in the skeleton of KK-Ay mice. Nevertheless, PEMF exerted no effect on serum biomarkers of bone resorption (TRAcP5b and CTX-1), osteoclast number, or osteoclast-specific gene expression (TRAP and cathepsin K). PEMF upregulated gene expression of canonical Wnt ligands (including Wnt1, Wnt3a, and Wnt10b), but not noncanonical Wnt5a. PEMF also upregulated skeletal protein expression of downstream p-GSK-3ß and ß-catenin in KK-Ay mice. Moreover, PEMF-induced improvement in bone microstructure, mechanical strength, and bone formation in KK-Ay mice was abolished after intragastric administration with the Wnt antagonist ETC-159. Together, our results suggest that PEMF can improve bone microarchitecture and quality by enhancing the biological activities of osteoblasts and osteocytes, which are associated with the activation of the Wnt/ß-catenin signaling pathway. PEMF might become an effective countermeasure against T2DM-induced bone deterioration.NEW & NOTEWORTHY PEMF improved trabecular bone microarchitecture and suppressed cortical bone porosity in T2DM KK-Ay mice. It attenuated T2DM-induced detrimental consequence on trabecular and cortical bone material properties. PEMF resisted bone deterioration in KK-Ay mice by enhancing osteoblast-mediated bone formation. PEMF also significantly suppressed osteocytic apoptosis and sclerostin expression in KK-Ay mice. The therapeutic potential of PEMF on T2DM-induced bone deterioration was associated with the activation of Wnt/ß-catenin signaling.


Asunto(s)
Enfermedades Óseas Metabólicas/terapia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Magnetoterapia , Osteoporosis/terapia , Animales , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Huesos/metabolismo , Huesos/efectos de la radiación , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Campos Electromagnéticos , Glucosa/metabolismo , Magnetoterapia/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteogénesis/fisiología , Osteogénesis/efectos de la radiación , Osteoporosis/etiología , Osteoporosis/genética , Osteoporosis/metabolismo , Vía de Señalización Wnt/efectos de la radiación , beta Catenina/metabolismo
14.
J Neurotrauma ; 38(6): 765-776, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33108939

RESUMEN

Spinal cord injury (SCI) leads to extensive bone loss and high incidence of low-energy fractures. Pulsed electromagnetic fields (PEMF) treatment, as a non-invasive biophysical technique, has proven to be efficient in promoting osteogenesis. The potential osteoprotective effect and mechanism of PEMF on SCI-related bone deterioration, however, remain unknown. The spinal cord of rats was transected at vertebral level T12 to induce SCI. Thirty rats were assigned to the control, SCI, and SCI+PEMF groups (n = 10). One week after surgery, the SCI+PEMF rats were subjected to PEMF (2.0 mT, 15 Hz, 2 h/day) for eight weeks. Micro-computed tomography results showed that PEMF significantly ameliorated trabecular and cortical bone microarchitecture deterioration induced by SCI. Three-point bending and nanoindentation assays revealed that PEMF significantly improved bone mechanical properties in SCI rats. Serum biomarker and bone histomorphometric analyses demonstrated that PEMF enhanced bone formation, as evidenced by significant increase in serum osteocalcin and P1NP, mineral apposition rate, and osteoblast number on bone surface. The PEMF had no impact, however, on serum bone-resorbing cytokines (TRACP 5b and CTX-1) or osteoclast number on bone surface. The PEMF also attenuated SCI-induced negative changes in osteocyte morphology and osteocyte survival. Moreover, PEMF significantly increased skeletal expression of canonical Wnt ligands (Wnt1 and Wnt10b) and stimulated their downstream p-GSK3ß and ß-catenin expression in SCI rats. This study demonstrates that PEMF can mitigate the detrimental consequence of SCI on bone quantity/quality, which might be associated with canonical Wnt signaling-mediated bone formation, and reveals that PEMF may be a promising biophysical approach for resisting osteopenia/osteoporosis after SCI in clinics.


Asunto(s)
Densidad Ósea/fisiología , Magnetoterapia/métodos , Osteogénesis/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Vía de Señalización Wnt/fisiología , Animales , Campos Electromagnéticos , Masculino , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/diagnóstico por imagen , Vértebras Torácicas/diagnóstico por imagen , Vértebras Torácicas/lesiones , Microtomografía por Rayos X/métodos
15.
Braz. j. med. biol. res ; 54(12): e11550, 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1345563

RESUMEN

Following radiotherapy, patients have decreased bone mass and increased risk of fragility fractures. Diabetes mellitus (DM) is also reported to have detrimental effects on bone architecture and quality. However, no clinical or experimental study has systematically characterized the bone phenotype of the diabetic patients following radiotherapy. After one month of streptozotocin injection, three-month-old male rats were subjected to focal radiotherapy (8 Gy, twice, at days 1 and 3), and then bone mass, microarchitecture, and turnover as well as bone cell activities were evaluated at 2 months post-irradiation. Micro-computed tomography results demonstrated that DM rats exhibited greater deterioration in trabecular bone mass and microarchitecture following irradiation compared with the damage to bone structure induced by DM or radiotherapy. The serum biochemical, bone histomorphometric, and gene expression assays revealed that DM combined with radiotherapy showed lower bone formation rate, osteoblast number on bone surface, and expression of osteoblast-related markers (ALP, Runx2, Osx, and Col-1) compared with DM or irradiation alone. DM plus irradiation also caused higher bone resorption rate, osteoclast number on bone surface, and expression of osteoclast-specific markers (TRAP, cathepsin K, and calcitonin receptor) than DM or irradiation treatment alone. Moreover, lower osteocyte survival and higher expression of Sost and DKK1 genes (two negative modulators of Wnt signaling) were observed in rats with combined DM and radiotherapy. Together, these findings revealed a higher deterioration of the diabetic skeleton following radiotherapy, and emphasized the clinical importance of health maintenance.

16.
Stem Cell Res Ther ; 11(1): 442, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059742

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) have been used as important cell-based tools for clinical applications. Oxidative stress-induced apoptosis causes a low survival rate after transplantation, and the underlying mechanisms remain unknown. The endoplasmic reticulum (ER) and mitochondria are vital organelles regulated by adenosine monophosphate (AMP)-activated protein kinase (AMPK), especially during oxidative stress injury. Melatonin exerts an antioxidant effect by scavenging free radicals. Here, we aimed to explore whether cytoprotective melatonin relieves ER stress-mediated mitochondrial dysfunction through AMPK in BMSCs after oxidative stress injury. METHODS: Mouse BMSCs were isolated and exposed to H2O2 in the absence or presence of melatonin. Thereafter, cell damage, oxidative stress levels, mitochondrial function, AMPK activity, ER stress-related proteins, and apoptotic markers were measured. Additionally, the involvement of AMPK and ER stress in the melatonin-mediated protection of BMSCs against H2O2-induced injury was investigated using pharmacologic agonists and inhibitors. RESULTS: Melatonin improved cell survival and restored mitochondrial function. Moreover, melatonin intimately regulated the phosphorylation of AMPK and molecules associated with ER stress pathways. AMPK activation and ER stress inhibition following melatonin administration improved the mitochondrial membrane potential (MMP), reduced mitochondria-initiated oxidative damage, and ultimately suppressed apoptotic signaling pathways in BMSCs. Cotreatment with N-acetyl-L-cysteine (NAC) significantly enhanced the antioxidant effect of melatonin. Importantly, pharmacological AMPK activation/ER stress inhibition promoted melatonin-induced cytoprotection, while pharmacological AMPK inactivation/ER stress induction conferred resistance to the effect of melatonin against H2O2 insult. CONCLUSIONS: Our data also reveal a new, potentially therapeutic mechanism by which melatonin protects BMSCs from oxidative stress-mediated mitochondrial apoptosis, possibly by regulating the AMPK-ER stress pathway.


Asunto(s)
Melatonina , Células Madre Mesenquimatosas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis , Peróxido de Hidrógeno/toxicidad , Melatonina/metabolismo , Melatonina/farmacología , Células Madre Mesenquimatosas/metabolismo , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo
17.
Mol Med Rep ; 22(1): 117-126, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32377732

RESUMEN

Acute liver failure (ALF) is a fatal liver disease characterized by severe hepatocyte destruction. MicroRNAs (miRNAs/miRs) have been reported to serve a key role in a number of liver diseases. Therefore, the aim of the present study was to investigate the role and underlying mechanism of miR­214 in ALF. ALF murine and hepatocyte models were established using D­galactosamine (D­GalN) and lipopolysaccharide (LPS) or D­GalN + tumor necrosis factor (TNF)­α, respectively. The expression levels of miR­214 and Bax were detected by reverse transcription­quantitative polymerase chain reaction (RT­qPCR) and/or western blotting. Furthermore, an automatic biochemical analyzer was used to measure the levels of aspartate aminotransferase (AST) or alanine aminotransferase (ALT). The levels of TNF­α and interleukin (IL)­6 were detected by ELISA and RT­qPCR. In addition, TUNEL staining and flow cytometry were used to analyze cell apoptosis, and the protein expression of caspase­3 was determined by western blotting. It was identified that the levels of AST and ALT were increased and that hepatocyte apoptosis was enhanced in the D­GalN/LPS­stimulated group compared with the control. Furthermore, higher expression of caspase­3 was observed in the D­GalN/LPS­stimulated group. In addition, it was demonstrated that miR­214 was downregulated, while Bax was upregulated in D­GalN/LPS­stimulated mice and D­GalN/TNF­α­stimulated BNLCL2 cells. Moreover, in D­GalN/TNF­α­stimulated BNLCL2 cells, miR­214 overexpression suppressed apoptosis and decreased TNF­α and IL­6 levels, and these effects were reversed by the Bax plasmid. It was also identified that overexpression of miR­214 significantly decreased Bax mRNA and protein expression levels in vitro. Collectively, the present results suggested that miR­214 inhibited hepatocyte apoptosis during ALF development via targeting Bax, thus indicating that miR­214 may be a potential target for ALF treatment.


Asunto(s)
Fallo Hepático Agudo/genética , MicroARNs/genética , Proteína X Asociada a bcl-2/genética , Animales , Progresión de la Enfermedad , Regulación de la Expresión Génica , Fallo Hepático Agudo/patología , Masculino , Ratones Endogámicos BALB C
18.
Bone ; 133: 115266, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32044333

RESUMEN

Long-term glucocorticoid therapy is known to induce increased bone fragility and impaired skeletal regeneration potential. Growing evidence suggests that pulsed electromagnetic fields (PEMF) can accelerate fracture healing and increase bone mass both experimentally and clinically. However, how glucocorticoid-treated bone and bone cells respond to PEMF stimulation remains poorly understood. Here we tested the effects of PEMF on bone quantity/quality, bone metabolism, and porous implant osseointegration in rabbits treated with dexamethasone (0.5 mg/kg/day, 6 weeks). The micro-CT, histologic and nanoindentation results showed that PEMF ameliorated the glucocorticoid-mediated deterioration of cancellous and cortical bone architecture and intrinsic material properties. Utilizing the new porous titanium implant (Ti2448) with low toxicity and low elastic modulus, we found that PEMF stimulated bone ingrowth into the pores of implants and enhanced peri-implant bone material quality during osseous defect repair in glucocorticoid-treated rabbits. Dynamic histomorphometric results revealed that PEMF reversed the adverse effects of glucocorticoids on bone formation, which was confirmed by increased circulating osteocalcin and P1NP. PEMF also significantly attenuated osteocyte apoptosis, promoted osteoblast-related osteocalcin, Runx2 and Osx expression, and inhibited osteocyte-specific DKK1 and Sost expression (negative regulators of osteoblasts) in glucocorticoid-treated skeletons, revealing improved functional activities of osteoblasts and osteocytes. Nevertheless, PEMF exerted no effect on circulating bone-resorbing cytokines (serum TRAcP5b and CTX-1) or skeletal gene expression of osteoclast-specific markers (TRAP and cathepsin K). PEMF also significantly upregulated skeletal gene expression of canonical Wnt ligands (Wnt1, Wnt3a and Wnt10b), whereas PEMF did not alter non-canonical Wnt5a expression. This study demonstrates that PEMF treatment improves bone mass, strength and porous implant osseointegration in glucocorticoid-treated rabbits by promoting potent bone-anabolic action, which is associated with canonical Wnt-mediated improvement in osteoblast and osteocyte functions. This study provides a new treatment alternative for glucocorticoid-related bone disorders in a convenient and non-invasive manner.


Asunto(s)
Glucocorticoides , Oseointegración , Animales , Huesos , Campos Electromagnéticos , Glucocorticoides/efectos adversos , Porosidad , Conejos
19.
FASEB J ; 34(2): 2579-2594, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908007

RESUMEN

The skeleton of type 1 diabetes mellitus (T1DM) has deteriorated mechanical integrity and increased fragility, whereas the mechanisms are not fully understood. Load-induced microdamage naturally occurs in bone matrix and can be removed by initiating endogenous targeted bone remodeling. However, the microdamage accumulation in diabetic skeleton and the corresponding bone remodeling mechanisms remain poorly understood. Herein, streptozotocin-induced T1DM rats and age-matched non-diabetic rats were subjected to daily uniaxial ulnar loading for 1, 4, 7, and 10 days, respectively. The SPECT/CT and basic fuchsin staining revealed significant higher-density spatial accumulation of linear and diffuse microdamage in diabetic ulnae than non-diabetic ulnae. Linear microcracks increased within 10-day loading in diabetic bone, whereas peaked at Day 7 in non-diabetic bone. Moreover, diabetic fatigued ulnae had more severe disruptions of osteocyte canaliculi around linear microcracks. Immunostaining results revealed that diabetes impaired targeted remodeling in fatigued bone at every key stage, including increased apoptosis of bystander osteocytes, decreased RANKL secretion, reduced osteoclast recruitment and bone resorption, and impaired osteoblast-mediated bone formation. This study characterizes microdamage accumulation and abnormal remodeling mechanisms in the diabetic skeleton, which advances our etiologic understanding of diabetic bone deterioration and increased fragility from the aspect of microdamage accumulation and bone remodeling.


Asunto(s)
Remodelación Ósea/fisiología , Resorción Ósea/metabolismo , Diabetes Mellitus/metabolismo , Osteoclastos/metabolismo , Animales , Apoptosis/fisiología , Resorción Ósea/fisiopatología , Masculino , Osteocitos/metabolismo , Ratas Sprague-Dawley , Estrés Mecánico , Cúbito/fisiopatología , Soporte de Peso/fisiología
20.
FASEB J ; 34(2): 3037-3050, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908035

RESUMEN

Pulsed electromagnetic fields (PEMFs) and whole-body vibration (WBV) are proved to partially preserve bone mass/strength in hindlimb-unloaded and ovariectomized animals. However, the potential age-dependent skeletal response to either PEMF or WBV has not been fully investigated. Moreover, whether the coupled "mechano-electro-magnetic" signals can induce greater osteogenic potential than single stimulation remains unknown. Herein, 5-month-old or 20-month-old rats were assigned to the Control, PEMF, WBV, and PEMF + WBV groups. After 8-week treatment, single PEMF/WBV enhanced bone mass, strength, and anabolism in 5-month-old rats, but not in 20-month-old rats. PEMF + WBV induced greater increase of bone quantity, quality, and anabolism than single PEMF/WBV in young adult rats. PEMF + WBV also inhibited bone loss in elderly rats by primarily improving osteoblast and osteocyte activity, but had no effects on bone resorption. PEMF + WBV upregulated the expression of various canonical Wnt ligands and downstream molecules (p-GSK-3ß and ß-catenin), but had no impacts on noncanonical Wnt5a expression in aged skeleton, revealing the potential involvement of canonical Wnt signaling in bone anabolism of PEMF + WBV. This study not only reveals much weaker responsiveness of aged skeleton to single PEMF/WBV relative to young adult skeleton, but also presents a novel noninvasive approach based on combinatorial treatment with PEMF + WBV for improving bone health and preserving bone quantity/quality (especially for age-related osteoporosis) with stronger anabolic effects.


Asunto(s)
Envejecimiento , Magnetoterapia , Osteoporosis , Esqueleto , Vibración , Animales , Masculino , Osteoporosis/metabolismo , Osteoporosis/fisiopatología , Osteoporosis/terapia , Ratas , Ratas Sprague-Dawley , Esqueleto/metabolismo , Esqueleto/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...