Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nature ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885694

RESUMEN

An ideal synthesis of alkyl amines would involve the direct use of abundant and easily accessible molecules such as dinitrogen (N2) and feedstock alkenes1-4. However, this ambition remains a great challenge as it is usually difficult to simultaneously activate both N2 and a simple alkene and combine them together through carbon-nitrogen (C-N) bond formation. Currently, the synthesis of alkyl amines relies on the use of ammonia produced through the Haber-Bosch process and prefunctionalized electrophilic carbon sources. Here we report the hydroamination of simple alkenes with N2 in a trititanium hydride framework, which activates both alkenes and N2, leading to selective C-N bond formation and providing the corresponding alkyl amines on further hydrogenation and protonation. Computational studies reveal key mechanistic details of N2 activation and selective C-N bond formation. This work demonstrates a strategy for the transformation of N2 and simple hydrocarbons into nitrogen-containing organic compounds mediated by a multinuclear hydride framework.

2.
Inorg Chem ; 63(20): 9195-9203, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38722730

RESUMEN

The stereoselective polymerization of polar vinyl monomers has recently received much attention due to their excellent physicochemical properties. Over the past decade, breakthroughs have been achieved in this field by rare-earth catalysts. However, the mechanistic origins of those stereoselective polymerizations still remain unclear. Herein, stereoselective polymerization of ortho-methoxystyrene (oMOS) by several representative rare-earth catalysts bearing different ligands (i.e., η5-C5Me5, pyridinyl-methylene-fluorenyl, quinolyl-anilido, ß-diketiminato) were systematically investigated by density functional theory (DFT) calculations. After achieving agreement between the calculations and experiments, we focused on discussing the role of ligands in controlling stereoselectivity. Our results reveal that the stereoregularity of oMOS polymerization is mainly controlled by the steric effect of the catalyst-monomer structures. Specifically, the type of ligand influences the orientation and configuration of the inserting monomer, thereby affecting the tacticity of the polymers. In the cases of η5-C5Me5-, pyridinyl-methylene-fluorenyl, and quinolyl-anilido-ligated yttrium catalysts, we observe consistent insertion directions and alternating insertion sides of oMOS monomers, leading to syndiotactic selectivity. The opposite insertion directions and the alternating insertion sides of oMOS monomers were observed in the case of the ß-diketiminato yttrium catalyst, leading to isotactic selectivity. These findings reported here offer valuable insights into the role of ligands in controlling stereoselectivity in rare-earth catalyzed coordination polymerization of polar vinyl monomers, thus providing guidance for the rational design of new ligands for stereospecific polymerization of polar monomers in the future.

3.
Inorg Chem ; 63(18): 8079-8091, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38663005

RESUMEN

Density functional theory (DFT) calculations have been conducted to elucidate the detailed mechanisms of yttrium-catalyzed C-H polyaddition of 1,4-dimethoxybenzene (DMB) to 1,4-divinylbenzene (DVB). It was computationally determined that DMB not only serves as a substrate but also performs a crucial role as a ligand, stabilizing the catalytically active species and promoting alkene insertion. Side pathways involving Cß-H activation and C═C continuous insertion were excluded due to steric and electronic factors, respectively, explaining why the reaction occurred efficiently and selectively to give perfectly alternating DMB-DVB polymers. Interestingly, the theoretical prediction of the reactivity of N,N-dimethyl-1,4-phenylenediamine and 2,2'-biethyl-4,4'-bipyridine reveals significant differences in the coordination effects of these substrates, leading to distinct mechanisms, primarily influenced by their steric effects. These findings shed new light on the previously overlooked role of substrate ligand effects in rare-earth-catalyzed step-growth copolymerization reactions.

4.
Inorg Chem ; 63(7): 3544-3559, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38308632

RESUMEN

The direct copolymerization of polar and nonpolar olefins is of great interest and significance, as it is the most atom-economical and straightforward strategy for the synthesis of functional polyolefin materials. Despite considerable efforts, the precise control of monomer-sequence and their regio- and stereochemistry is full of challenges, and the related mechanistic origins are still in their infancy to date. Herein, the mechanistic studies on the model reaction of Sc-catalyzed co-syndiospecific alternating copolymerization of anisylpropylene (AP) and styrene were performed by DFT calculations. The results suggest that the subtle balance between electronic and steric factors plays an important role during monomer insertions, and a new amino-dissociated mechanism was proposed for AP insertion at chain initiation. AP insertion follows the 2,1-si-insertion pattern, which is mainly controlled by steric factors caused by the restricted MeO···Sc interaction. As for styrene insertion, it prefers the 2,1-re-insertion manner and its regio- and stereoselectivities are influenced by steric repulsions between the inserting styrene and the polymer chain or the ligand. More interestingly, it is found that the alternating monomer-sequence is mainly determined by the "steric matching" principle, which is quantitatively expressed by the buried volume of the metal center of the preinserted species. The concept of steric pocket has been successfully applied to explain the different performances of several catalysts and other alternating copolymerization reactions. The insightful mechanistic findings and the quantitative steric pocket model present here are expected to promote rational design of new rare-earth catalysts for developing regio-, stereo-, and sequence-controlled copolymerization of specific polar and nonpolar olefins.

5.
Updates Surg ; 76(1): 289-298, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37277673

RESUMEN

This study aimed to evaluate the effectiveness of a structured postoperative handover protocol for postoperative transfer to the SICU. This study was a randomized controlled trial conducted in a comprehensive teaching hospital in China. Patients who were transferred to the SICU after surgery were randomly divided into two groups. The intervention group underwent postoperative structured handover protocol, and the control group still applied conventional oral handover. A total of 101 postoperative patients and 50 clinicians were enrolled. Although the intervention group did not shorten the handover duration (6.18 ± 1.66 vs 5.94 ± 1.91; P = 0.505), the handover integrity was significantly improved, mainly reflected in fewer information omissions (1.44 ± 0.97 vs 0.67 ± 0.62; P < 0.001), fewer additional questions raised by ICU physicians (1.06 ± 1.04 vs 0.24 ± 0.43; P < 0.001) and fewer additional handovers via phone call (16% vs 3.9%; P = 0.042). The total score of satisfaction of the intervention group was significantly higher than that of the control group (76.44 ± 7.32 vs 81.24 ± 6.95; P = 0.001). With respect to critical care, the incidence of stage I pressure sore within 24 h was lower in the intervention group than in the control group (20% vs 3.9%, P = 0.029). Structured postoperative handover protocol improves the efficiency and quality of interdisciplinary communication and clinical care in SICU.Trial registration This study was registered in China on January 8th, 2022 at Chinese Clinical Trial Registry (ChiCTR2200055400).


Asunto(s)
Pase de Guardia , Humanos , Comunicación Interdisciplinaria , Estudios Prospectivos , Unidades de Cuidados Intensivos , Hospitales de Enseñanza , Cuidados Críticos , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Adv Sci (Weinh) ; 11(9): e2307633, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38126667

RESUMEN

An unprecedented Et2 Zn-mediated gem-dicarboxylation of C─C/C─H single bond of cyclopropanols with CO2 is disclosed, which provides a straightforward and efficient methodology for the synthesis of a variety of structurally diverse and useful malonic acids in moderate to excellent yields. The protocol features mild reaction conditions, excellent functional group compatibility, broad substrate scope, and facile derivatization of the products. DFT calculations confirm that the transition-metal-free transformation proceeds through a novel ring-opening/α-functionalization/ring-closing/ring-opening/ß-functionalization (ROFCOF) process, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) plays dual important roles in the transformation.

7.
Org Lett ; 25(51): 9164-9169, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38097282

RESUMEN

We describe here an organocatalytic asymmetric cascade formal [3 + 3] cycloaddition of benzothiazoles with 2-nitroallylic acetates and nitroenynes. This dearomative methodology provided a facile and efficient strategy for the construction of a broad range of valuable benzothiazolopyridines bearing two adjacent stereogenic centers in moderate to good yields with good to excellent stereocontrol.

8.
J Am Chem Soc ; 145(29): 15721-15728, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432445

RESUMEN

Herein, a protocol for enantioconvergent transformation of anisole derivatives is disclosed via nickel-catalyzed dynamic kinetic asymmetric cross-coupling of the C(Ar)-OMe bond. Versatile axially chiral heterobiaryls are successfully assembled. Synthetic transformations demonstrate the application potential of this method. Mechanistic studies indicate that the enantioconvergence of this transformation might be accessed through a chiral ligand-controlled epimerization of diastereomeric 5-membered aza-nickelacycle species rather than a conventional dynamic kinetic resolution.

9.
Inorg Chem ; 62(2): 979-988, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36603128

RESUMEN

Benzylic C(sp3)-H alkylation of tertiary anilines with alkenes by an anilido-oxazoline-ligated scandium alkyl catalyst was recently reported with C-H site selectivity and alkene-dependent regioselectivity. Revealing the mechanism and origin of selectivity is undoubtedly of great importance for understanding experimental observations and developing new reactions. Herein, density functional theory (DFT) calculations have been carried out on the model reaction of Sc-catalyzed benzylic C(sp3)-H alkylation of N,N-dimethyl-o-toluidine with allylbenzene. The reaction generally undergoes the generation of active species, alkene insertion, and protonation steps. The difference of the distortion energy of the aniline moiety in transition states, which is related to the ring size of the forming metallacycles, accounts for the site selectivity of C-H activation. Benzylic C(sp3)-H activation possessing less strained five-membered metallacycle compared to the ortho-C(sp2)-H and α-methyl C(sp3)-H activation results in benzylic C(sp3)-H alkylation observed experimentally. Both steric and electronic factors are responsible for the 1,2-insertion regioselectivity for alkyl-substituted alkenes, while electronic factors control the 2,1-insertion manner for vinylsilanes. The analysis of original alkene substrates further strengthens the understanding of the alkene-dependent regioselectivity. These results help us to obtain the mechanistic understanding and are expected to be conducive to the development of new C-H functionalization reactions.


Asunto(s)
Alquenos , Escandio , Compuestos de Anilina , Alquilación , Catálisis
10.
IEEE Trans Neural Netw Learn Syst ; 34(1): 134-143, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34197327

RESUMEN

Referring expression comprehension (REC) is an emerging research topic in computer vision, which refers to the detection of a target region in an image given a test description. Most existing REC methods follow a multistage pipeline, which is computationally expensive and greatly limits the applications of REC. In this article, we propose a one-stage model toward real-time REC, termed real-time global inference network (RealGIN). RealGIN addresses the issues of expression diversity and complexity of REC with two innovative designs: adaptive feature selection (AFS) and Global Attentive ReAsoNing (GARAN). Expression diversity concerns varying expression content, which includes information such as colors, attributes, locations, and fine-grained categories. To address this issue, AFS adaptively fuses features of different semantic levels to tackle the changes in expression content. In contrast, expression complexity concerns the complex relational conditions in expressions that are used to identify the referent. To this end, GARAN uses the textual feature as a pivot to collect expression-aware visual information from all regions and then diffuses this information back to each region, which provides sufficient context for modeling the relational conditions in expressions. On five benchmark datasets, i.e., RefCOCO, RefCOCO+, RefCOCOg, ReferIT, and Flickr30k, the proposed RealGIN outperforms most existing methods and achieves very competitive performances against the most advanced one, i.e., MAttNet. More importantly, under the same hardware, RealGIN can boost the processing speed by 10-20 times over the existing methods.

11.
Org Lett ; 24(47): 8603-8608, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36403156

RESUMEN

A chiral Lewis base catalyzed enantioselective N-allylic alkylation of 2-hydroxypyridines and MBH carbonates is documented, affording a convenient access to N-alkylated 2-pyridones with up to 99% ee and 99% yield. Experimental and computational studies have revealed that the strong hydrogen bond interaction between the chiral Lewis base catalyst and 2-hydroxypyridines plays a crucial role in this reaction for the reactivity, chemoselectivity, and enantioselectivity.


Asunto(s)
Bases de Lewis , Piridonas , Alquilación , Enlace de Hidrógeno
12.
Inorg Chem ; 61(43): 17330-17341, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36259978

RESUMEN

Although considerable progress has been achieved in C-H functionalization by cationic rare-earth alkyl complexes, the potential facilitating roles of heteroatom-containing substrates during the catalytic cycle remain highly underestimated. Herein, theoretical studies on the model reaction of C(sp2)-H addition of pyridines to allenes by scandium catalyst were carefully carried out to reveal the detailed mechanism. A coordinating pyridine substrate as a ligand can effectively stabilize some key structures. An obvious facilitating role delivered by the coordinating pyridine was found for allene insertion, while the pyridine-free mechanism prefers to occur for C(sp2)-H activation processes. Importantly, the elusive role of heteroatom-containing substrates was systematically revealed for the C-H activation event by designing a metal/ligand combination of catalysts and substrates. We found that the pyridyl C(sp2)-H activation would be switched to the pyridine-coordinated mechanism in the cases of the designed Y and La catalysts. To date, this is the first time to realize the potential substrate-facilitating role in cationic rare-earth-catalyzed C-H activation processes. Moreover, theoretical predictions show that similar switchable mechanisms also work for other types of C-H bonds and other heteroatom-involved substrates by fine-adjusting the steric surroundings of catalysts. The two C-H activation mechanisms are mainly the result of the delicate balance between electronic and steric factors. In general, the catalytic system with less steric hindrance prefers to undergo the substrate-coordinated mechanism. In contrast, the substrate-free mechanism is favorable due to steric repulsion. These results are helpful for us to better understand the variant mechanisms in rare-earth-catalyzed C-H functionalization at the atomistic level and may help guide the rational design of new catalytic reactions. In addition, the origins of the regio- and stereoselectivity were discussed through geometric parameters and distortion/interaction analysis.


Asunto(s)
Alcadienos , Metales de Tierras Raras , Ligandos , Catálisis
13.
Nat Commun ; 13(1): 2953, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618745

RESUMEN

Nonpolar alkyl moieties, especially methyl group, are frequently used to modify bioactive molecules during lead optimization in medicinal chemistry. Thus transition-metal catalyzed alkylative cross-coupling reactions by using readily available and environmentally benign C-O electrophiles have been established as powerful tools to install alkyl groups, however, the C(sp3)-C(sp2) cross-coupling via asymmetric activation of aromatic C-O bond for the synthesis of alkylated chiral compounds remains elusive. Here, we unlock a C(sp3)-C(sp2) cross-coupling via enantioselective activation of aromatic C-O bond for the efficient synthesis of versatile axially chiral 2-alkyl-2'-hydroxyl-biaryl compounds. By employing a unique chiral N-heterocyclic carbene ligand, this transformation is accomplished via nickel catalysis with good enantiocontrol. Mechanistic studies indicate that bis-ligated nickel complexes might be formed as catalytically active species in the enantioselective alkylative cross-coupling. Moreover, further derivation experiments suggest this developed methodology holds great promise for complex molecule synthesis and asymmetric catalysis.


Asunto(s)
Níquel , Catálisis , Ligandos , Níquel/química , Estereoisomerismo
14.
RSC Adv ; 12(22): 13593-13599, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35530397

RESUMEN

The catalytic C-H alkylation with alkenes is of much interest and importance, as it offers a 100% atom efficient route for C-C bond construction. In the past decade, great progress in rare-earth catalysed C-H alkylation of various heteroatom-containing substrates with alkenes has been made. However, whether or how a heteroatom-containing substrate would influence the coordination or insertion of an alkene at the catalyst metal center remained elusive. In this work, the mechanism of Sc-catalysed C-H alkylation of sulfides with alkenes and dienes has been carefully examined by DFT calculations, which revealed that the alkene insertion could proceed via a sulfide-facilitated mechanism. It has been found that a similar mechanism may also work for the C-H alkylation of other heteroatom-containing substrates such as pyridine and anisole. Moreover, the substrate-facilitated alkene insertion mechanism and a substrate-free one could be switched by fine-tuning the sterics of catalysts and substrates. This work provides new insights into the role of heteroatom-containing substrates in alkene-insertion-involved reactions, and may help guide designing new catalysis systems.

15.
Appl Opt ; 61(11): 3195-3200, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35471298

RESUMEN

A novel, to the best of our knowledge, cantilever construction design of an adaptive fiber-optics collimator (AFOC) based on piezoelectric bimorph actuators for tip/tilt control is introduced. With this new cantilever structure, an AFOC with a diameter of only 6 mm was developed, and the output laser beam deviation angle and resonance frequency of the device were measured. The experimental results show that this new AFOC can provide more than 1 mrad deflection angle at a 20 V driving voltage, and the first resonance frequency is about 500 Hz. Further, in order to verify whether the cantilever structure can be used in a high-power fiber collimator, a high-power X-Y positioner with an 8 mm diameter fiber end cap was developed. The experimental results show that the high-power X-Y positioner can output more than 2 kW laser power and provide about 330 µm displacement of the fiber end cap in the X direction and about 770 µm in the Y direction at a 150 V driving voltage.

16.
IEEE Trans Image Process ; 31: 3386-3398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35471883

RESUMEN

Despite the exciting performance, Transformer is criticized for its excessive parameters and computation cost. However, compressing Transformer remains as an open problem due to its internal complexity of the layer designs, i.e., Multi-Head Attention (MHA) and Feed-Forward Network (FFN). To address this issue, we introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer. LW-Transformer applies Group-wise Transformation to reduce both the parameters and computations of Transformer, while also preserving its two main properties, i.e., the efficient attention modeling on diverse subspaces of MHA, and the expanding-scaling feature transformation of FFN. We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets. Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks. To examine the generalization ability, we apply LW-Transformer to the task of image classification, and build its network based on a recently proposed image Transformer called Swin-Transformer, where the effectiveness can be also confirmed.

18.
ACS Nano ; 16(5): 7344-7351, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34889091

RESUMEN

In aqueous Zn-ion batteries, the intercalation chemistry often foil attempts at the realization of high energy density. Unlocking the full potential of zinc-sulfur redox chemistry requires the manipulation of the feedbacks between kinetic response and the cathode's composition. The cell degradation mechanism also should be tracked simultaneously. Herein, we design a high-energy Zn-S system where the high-capacity cathode was fabricated by in situ interfacial polymerization of Fe(CN)64--doped polyaniline within the sulfur nanoparticle. Compared with sulfur, the FeII/III(CN)64/3- redox mediators exhibit substantially faster cation (de)insertion kinetics. The higher cathodic potential (FeII(CN)64-/FeIII(CN)63- ∼ 0.8 V vs S/S2- ∼ 0.4 V) spontaneously catalyzes the full reduction of sulfur during battery discharge (S8 + Zn2FeII(CN)6 ↔ ZnS + Zn1.5FeIII(CN)6, ΔG = -24.7 kJ mol-1). The open iron redox species render a lower energy barrier to ZnS activation during the reverse charging process, and the facile Zn2+ intercalative transport facilitates highly reversible conversion between S and ZnS. The yolk-shell structured cathode with 70 wt % sulfur delivers a reversible capacity of 1205 mAh g-1 with a flat operation voltage of 0.58 V, a fade rate over 200 cycles of 0.23%/cycle, and an energy density of 720 Wh kgsulfur-1. A range of ex situ investigations reveal the degradation nature of Zn-S cells: aggregation of inactive ZnS nanocrystals rather than the depletion of Zn anode. Impressively, the flexible solid-state Zn battery employing the composite cathode was assembled, realizing an energy density of 375 Wh kgsulfur-1. The proposed redox electrocatalysis effect provides reliable insights into the tunable Zn-S chemistry.

19.
Org Lett ; 23(23): 9309-9314, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34779210

RESUMEN

A novel and facile approach to synthesis of 1-substituted cyclopropylamines via phosphine-catalyzed formal tertiary Csp3-H amination of cyclopropanes was described. The indoles, pyrroles, imidazoles, uracils, 2-pyridone, pyrimidin-4(3H)-one, and phthalimide had been proven as good aminating partners. The present protocol features transition-metal-free, excellent regioselectivity, high-atom-economy, and mild reaction conditions and a broad range of substrates. The practicability of this protocol can also be demonstrated with late-stage modification of bioactive molecules, scaled up reaction, and divergent derivatization. Notably, the method has been used in the formal synthesis of the hormone-sensitive lipase (HSL) inhibitor. The mechanistic aspects were elucidated by both experimental and computational studies.

20.
J Am Chem Soc ; 143(48): 20462-20471, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34813697

RESUMEN

The catalytic enantioselective construction of three-dimensional molecular architectures from planar aromatics such as quinolines is of great interest and importance from the viewpoint of both organic synthesis and drug discovery, but there still exist many challenges. Here, we report the scandium-catalyzed asymmetric dearomative spiro-annulation of quinolines with alkynes. This protocol offers an efficient and selective route for the synthesis of spiro-dihydroquinoline derivatives containing a quaternary carbon stereocenter with an unprotected N-H group from readily accessible quinolines and diverse alkynes, featuring high yields, high enantioselectivity, 100% atom-efficiency, and broad substrate scope. Experimental and density functional theory studies revealed that the reaction proceeded through the C-H activation of the 2-aryl substituent in a quinoline substrate by a scandium alkyl (or amido) species followed by alkyne insertion into the Sc-aryl bond and the subsequent dearomative 1,2-addition of the resulting scandium alkenyl species to the C═N unit in the quinoline moiety. This work opens a new avenue for the dearomatization of quinolines, leading to efficient and selective construction of spiro molecular architectures that were previously difficult to access by other means.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA