Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 475
1.
J Nat Prod ; 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38856635

Ten new ergone derivatives (1-10) and five known analogues (11-15) were isolated from the deep-sea-derived fungus Aspergillus terreus YPGA10. The structures including the absolute configurations were established by detailed analysis of the NMR spectroscopic data, HRESIMS, ECD calculation, and coupling constant calculation. All the structures are characterized by a highly conjugated 25-hydroxyergosta-4,6,8(14),22-tetraen-3-one nucleus. Structurally, compound 2 bearing a 15-carbonyl group and compounds 5-7 possessing a 15ß-OH/OCH3 group are rarely encountered in ergone derivatives. Bioassay results showed that compounds 1 and 11 demonstrated cytotoxic effects on human colon cancer SW620 cells with IC50 values of 8.4 and 3.1 µM, respectively. Notably, both compounds exhibited negligible cytotoxicity on the human normal lung epithelial cell BEAS-2B. Compound 11 was selected for preliminary mechanistic study and was found to inhibit cell proliferation and induce apoptosis in human colon cancer SW620 cells. In addition, compound 1 displayed cytotoxic activity against five human leukemia cell lines with IC50 values ranging from 5.7 to 8.9 µM. Our study demonstrated that compound 11 may serve as a potential candidate for the development of anticolorectal cancer agents.

2.
J Agric Food Chem ; 72(20): 11415-11428, 2024 May 22.
Article En | MEDLINE | ID: mdl-38727515

Rice sheath blight, caused by the fungus Rhizoctonia solani, poses a significant threat to rice cultivation globally. This study aimed to investigate the potential mechanisms of action of camphor derivatives against R. solani. Compound 4o exhibited superior fungicidal activities in vitro (EC50 = 6.16 mg/L), and in vivo curative effects (77.5%) at 500 mg/L were significantly (P < 0.01) higher than the positive control validamycin·bacillus (66.1%). Additionally, compound 4o exhibited low cytotoxicity and acute oral toxicity for adult worker honeybees of Apis mellifera L. Mechanistically, compound 4o disrupted mycelial morphology and microstructure, increased cell membrane permeability, and inhibited both PDH and SDH enzyme activities. Molecular docking and molecular dynamics analyses indicated a tight interaction of compound 4o with PDH and SDH active sites. In summary, compound 4o exhibited substantial antifungal efficacy against R. solani, serving as a promising lead compound for further optimization of antifungal agents.


Camphor , Fungicides, Industrial , Molecular Docking Simulation , Oryza , Plant Diseases , Rhizoctonia , Rhizoctonia/drug effects , Oryza/microbiology , Plant Diseases/microbiology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Animals , Camphor/pharmacology , Camphor/chemistry , Bees/microbiology , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Structure-Activity Relationship
3.
Cell Rep ; 43(5): 114223, 2024 May 28.
Article En | MEDLINE | ID: mdl-38748879

Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.


Bacterial Proteins , Burkholderia cenocepacia , Coenzyme A Ligases , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Quorum Sensing , Quorum Sensing/genetics , Burkholderia cenocepacia/pathogenicity , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/metabolism , Virulence , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Animals , Signal Transduction , Fatty Acids, Monounsaturated/metabolism , Mice , Protein Binding , Lauric Acids/metabolism
4.
Clinics (Sao Paulo) ; 79: 100383, 2024.
Article En | MEDLINE | ID: mdl-38797123

BACKGROUND: Neonatal Intrahepatic Cholestasis (NICCD), as the early-age stage of Citrin deficiency involving liver dysfunction, lacks efficient diagnostic markers. Procalcitonin (PCT) has been identified as a biomarker for infection as well as various organ damage. This study aimed to explore the potential of PCT as a biomarker for NICCD. METHODS: In a single-center retrospective case-control study. Serum PCT concentrations before and after treatment of 120 NICCD patients, as the study group, were compared to the same number of cholestatic hepatitis patients, as the control group. The potential value of PCT to discriminate NICCD from control disease was further explored using Receiver Operating Characteristic (ROC) curve analysis and compared to those of other inflammatory markers. RESULTS: There was a significantly higher level of PCT in NICCD patients than in the control group. PCT concentrations were only weakly correlated with neutrophil counts and CRP levels (p ˂ 0.05). At a cut-off value of 0.495 ng/mL, PCT exhibited a significantly higher diagnostic value compared to other inflammatory markers for discriminating NICCD from the control, with a sensitivity of 90.8 % and specificity of 98.3 %. CONCLUSION: PCT might be used as an initial biomarker to discriminate children with NICCD from another hepatitis disease.


Biomarkers , Cholestasis, Intrahepatic , Citrullinemia , Procalcitonin , ROC Curve , Humans , Procalcitonin/blood , Biomarkers/blood , Retrospective Studies , Male , Female , Case-Control Studies , Cholestasis, Intrahepatic/blood , Cholestasis, Intrahepatic/diagnosis , Citrullinemia/blood , Citrullinemia/complications , Citrullinemia/diagnosis , Infant , Infant, Newborn , Sensitivity and Specificity , C-Reactive Protein/analysis , Reference Values
5.
Int J Neurosci ; : 1-10, 2024 May 13.
Article En | MEDLINE | ID: mdl-38712596

BACKGROUND: The underlying mechanism of SENP5 influences neuronal regeneration and apoptosis in the context of TBI remains largely unexplored. METHODS: In the present study, PC12 cells treated with scratch for 24 h were regarded as a TBI cell model. The expression of SENP5 in PC12 cells was measured via Quantitative Real-Time PCR (qRT-PCR) and western blot assays. Cell Counting Kit 8 (CCK-8) and Flow cytometry assays were used to evaluate the activity of TBI cells. In addition, we assessed the effect of inhibiting SENP5 in vivo on neurological function deficits and apoptosis in the hippocampal tissues of TBI rats. The relationship between SENP5 and NEDD4L/TCF3 axis was proved via immunoprecipitation (IP) and double luciferase assays. RESULTS: Following TBI cell modeling, an increase in SENP5 expression has been found. Moreover, TBI modeling resulted in reduced cell viability and increased apoptosis, which was rescue by inhibition of SENP5. In vivo experiments demonstrated that SENP5 inhibition could mitigate TBI-induced brain injury in rats. Specifically, this inhibition led to lower neurological impairment scores, improved neuronal morphology and structure, and decreased neuronal apoptosis. In addition, NEDD4L has been proved to be relevant to the enhanced stability of the transcription factor TCF3, which in turn promoted the expression of SENP5. CONCLUSIONS: This study reveals that inhibiting SENP5 can alleviate brain injury following TBI. NEDD4L/TCF3 axis can regulate the expression of SENP5 to affect the development of TBI. However, SENP5 regulates downstream targets of TBI and important mechanisms need to be further explored.

6.
Bioorg Chem ; 149: 107474, 2024 Aug.
Article En | MEDLINE | ID: mdl-38805909

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high mortality lung disease. Although the antifibrotic drugs pirfenidone and nintedanib could slow the rate of lung function decline, the usual course of the condition is inexorably to respiratory failure and death. Therefore, new approaches and novel therapeutic drugs for the treatment of IPF are urgently needed. And the selective PDE4 inhibitor has in vivo and in vitro anti-fibrotic effects in IPF models. But the clinical application of most PDE4 inhibitors are limited by their unexpected and severe side effects such as nausea, vomiting, and diarrhea. Herein, structure-based optimizations of the natural product Moracin M resulted in a novel a novel series of 2-arylbenzofurans as potent PDE4 inhibitors. The most potent inhibitor L13 has an IC50 of 36 ± 7 nM with remarkable selectivity across the PDE families and administration of L13·citrate (10.0 mg/kg) exhibited comparable anti-pulmonary fibrosis effects to pirfenidone (300 mg/kg) in a bleomycin-induced IPF mice model, indicate that L13 is a potential lead for the treatment of IPF.


Cyclic Nucleotide Phosphodiesterases, Type 4 , Idiopathic Pulmonary Fibrosis , Phosphodiesterase 4 Inhibitors , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/chemical synthesis , Phosphodiesterase 4 Inhibitors/therapeutic use , Animals , Structure-Activity Relationship , Mice , Molecular Structure , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Bleomycin , Dose-Response Relationship, Drug , Mice, Inbred C57BL , Male , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/chemical synthesis
7.
Sci Rep ; 14(1): 11474, 2024 05 20.
Article En | MEDLINE | ID: mdl-38769356

This study investigated the correlation of newly identified inflammatory and insulin resistance indices with cerebral amyloid angiopathy (CAA), and explored their potential to differentiate CAA from hypertensive arteriopathy (HA). We retrospectively analyzed 514 consecutive patients with cerebral small vessel disease (CSVD)-related haemorrhage, comparing the differences in novel inflammatory and insulin resistance indices between patients with CAA and HA. Univariate regression, LASSO and multivariate regression were used to screen variables and construct a classification diagnosis nomogram. Additionally, these biomarkers were explored in patients with mixed haemorrhagic CSVD. Inflammatory indices were higher in CAA patients, whereas insulin resistance indices were higher in HA patients. Further analysis identified neutrophil-to-lymphocyte ratio (NLR, OR 1.17, 95% CI 1.07-1.30, P < 0.001), and triglyceride-glucose index (TyG, OR = 0.56, 95% CI 0.36-0.83, P = 0.005) as independent factors for CAA. Therefore, we constructed a CAA prediction nomogram without haemorrhagic imaging markers. The nomogram yielded an area under the curve (AUC) of 0.811 (95% CI 0.764-0.865) in the training set and 0.830 (95% CI 0.718-0.887) in the test set, indicating an ability to identify high-risk CAA patients. These results show that CSVD patients can be phenotyped using novel inflammatory and insulin resistance indices, potentially allowing identification of high-risk CAA patients without haemorrhagic imaging markers.


Biomarkers , Cerebral Amyloid Angiopathy , Inflammation , Insulin Resistance , Humans , Male , Female , Cerebral Amyloid Angiopathy/pathology , Aged , Retrospective Studies , Biomarkers/blood , Inflammation/pathology , Middle Aged , Neutrophils/metabolism , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/blood , Nomograms , Lymphocytes/metabolism , Triglycerides/blood
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731930

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Gene Expression Regulation, Plant , Manihot , Plant Proteins , Plants, Genetically Modified , Promoter Regions, Genetic , Manihot/genetics , Manihot/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Starch Synthase/genetics , Starch Synthase/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Ethylenes/metabolism
9.
J Med Chem ; 67(10): 8309-8322, 2024 May 23.
Article En | MEDLINE | ID: mdl-38669059

Liver fibrosis is a common pathological feature of most chronic liver diseases with no effective drugs available. Phosphodiesterase 1 (PDE1), a subfamily of the PDE super enzyme, might work as a potent target for liver fibrosis by regulating the concentration of cAMP and cGMP. However, there are few PDE1 selective inhibitors, and none has been investigated for liver fibrosis treatment yet. Herein, compound AG-205/1186117 with the dihydropyrimidine scaffold was selected as the hit by virtual screening. A hit-to-lead structural modification led to a series of dihydropyrimidine derivatives. Lead 13h exhibited the IC50 of 10 nM against PDE1, high selectivity over other PDEs, as well as good safety properties. Administration of 13h exerted significant anti-liver fibrotic effects in bile duct ligation-induced fibrosis rats, which also prevented TGF-ß-induced myofibroblast differentiation in vitro, confirming that PDE1 could work as a potential target for liver fibrosis.


Cyclic Nucleotide Phosphodiesterases, Type 1 , Drug Design , Liver Cirrhosis , Phosphodiesterase Inhibitors , Pyrimidines , Animals , Cyclic Nucleotide Phosphodiesterases, Type 1/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Humans , Rats , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/therapeutic use , Phosphodiesterase Inhibitors/chemistry , Male , Structure-Activity Relationship , Rats, Sprague-Dawley , Molecular Docking Simulation , Molecular Structure
10.
Chemistry ; 30(33): e202400995, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38600034

Introduction of the trifluoromethyl (CF3) group into organic compounds has garnered substantial interest because of its significant role in pharmaceuticals and agrochemicals. Here, we report a hydroxylamine-mediated radical process for C(sp2)-H trifluoromethylation of terminal alkenes. The reaction shows good reactivity, impressive E/Z selectivity (up to >20 : 1), and broad functional group compatibility. Expansion of this approach to perfluoroalkylation and late-stage trifluoromethylation of bioactive molecules demonstrates its promising application potential. Mechanistic studies suggest that the reaction follows a radical addition and subsequent elimination pathway.

11.
Pest Manag Sci ; 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38676622

BACKGROUND: Rice sheath blight caused by Rhizoctonia solani is a severe threat to the yield and quality of rice. Due to the unscientific abuse of common fungicides causing resistance and environmental issues, the development of new fungicides is necessary. In this study, we used citral as the lead compound, designed and synthesized a series of novel citral amide derivatives, and evaluated their antifungal activity and mode of action against R. solani. RESULT: Bioassay results indicated that the antifungal activities of most citral amide derivatives against R. solani were significantly improved compared to citral, with EC50 values ranging from 9.50-27.12 mg L-1. Among them, compound d21 containing the N-(pyridin-4-yl)carboxamide group exhibited in vitro and in vivo fungicidal activities, with curative effects at 500 mg L-1 as effectively as the commercial fungicide validamycin·bacillus. Furthermore, d21 prolonged the lag phase of the growth curve of R. solani, reduced the amount of growth, and inhibited sclerotium germination and formation. Mechanistically, d21 deformed the mycelia, increased cell membrane permeability, and inhibited the activities of antioxidant and tricarboxylic acid cycle (TCA)-related enzymes. Metabolome analysis showed the abundance of some energy-related metabolites within R. solani increased, and simultaneously the antifungal substances secreted by itself reduced. Transcriptome analysis showed that most genes encoding ATP-binding cassette (ABC) transporters and peroxisomes upregulated after the treatment of d21 and cell membrane destruction. CONCLUSION: This study indicates that novel citral amide derivatives possess antifungal activity against R. solani and are expected to develop an alternative option for chemical control of rice sheath blight. © 2024 Society of Chemical Industry.

12.
Sci Rep ; 14(1): 6681, 2024 03 20.
Article En | MEDLINE | ID: mdl-38509141

Improving drug sensitivity is an important strategy in chemotherapy of cancer and accumulating evidence indicates that miRNAs are involved in the regulation of drug sensitivity, but the specific mechanism is still unclear. Our previous study has found that miR-296-5p was significantly downregulated in nasopharyngeal carcinoma (NPC). Here, we aim to explore whether miR-296-5p is involved in regulating cisplatin sensitivity in NPC by regulating STAT3/KLF4 signaling axis. The cell proliferation and clonogenic capacity of NPC cells were evaluated by CCK8 Assay and plate colony assay, respectively. The Annexin V-FITC staining kit was used to determine and quantify the apoptotic cells using flow cytometry. The drug efflux ability of NPC cells were determined by Rhodamine 123 efflux experiment. The expression of miR-296-5p, apoptosis-related genes and protein in NPC cell lines were detected by qPCR and Western blot, respectively. Animal study was used to evaluate the sensitivity of NPC cells to DDP treatment in vivo. Our results showed that elevated miR-296-5p expression obviously promoted the sensitivity of NPC cells to DDP by inhibiting cell proliferation and clonogenic capacity, and inducing apoptosis. In addition, we found that miR-296-5p inhibited the expression of STAT3 and KLF4 in NPC cells, while overexpression of exogenous STAT3 reversed miR-296-5p-mediated enhancement in cell death of DDP-treated NPC cells. In vivo studies further confirmed that miR-296-5p promotes the sensitivity of NPC cells to DDP treatment. miRNA-296-5p enhances the drug sensitivity of nasopharyngeal carcinoma cells to cisplatin via STAT3/KLF4 signaling pathway.


MicroRNAs , Nasopharyngeal Neoplasms , Animals , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cisplatin/metabolism , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Cell Proliferation , Gene Expression Regulation, Neoplastic , Drug Resistance, Neoplasm/genetics
13.
Medicine (Baltimore) ; 103(12): e37520, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38518036

Oral behavior management methods include basic behavior management methods and drug behavior management methods. In many cases, dental treatment that cannot be done simply through basic behavior management is not possible. The uncooperative behavior of children with dental fear in oral treatment has increased the demand for medication based behavior management methods. Drug sedation can provide more effective analgesic and anti-anxiety effects, thereby helping to provide comfortable, efficient, and high-quality dental services. This article will review the drug sedation methods selected in clinical treatment of pediatric dental fear in recent years, as well as the safety and effectiveness of commonly used drugs, in order to provide guidance for dental professionals in clinical practice.


Anesthesia, Dental , Anesthesia , Anti-Anxiety Agents , Child , Humans , Dental Anxiety/drug therapy , Dental Anxiety/prevention & control , Behavior Therapy , Conscious Sedation
14.
J Am Chem Soc ; 146(13): 9335-9346, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38501695

Controlling product selectivity in successive reactions of the same type is challenging owing to the comparable thermodynamic and kinetic properties of the reactions involved. Here, the synergistic interaction of the two phosphoryl groups in bisphosphine dioxides (BPDOs) with a bromo-phosphonium cation was studied experimentally to provide a practical tool for substrate-catalyst recognition. As the eventual result, we have developed a phosphonium-catalyzed monoreduction of chiral BPDOs to access an array of synthetically useful bisphosphine monoxides (BPMOs) with axial, spiro, and planar chirality, which are otherwise challenging to synthesize before. The reaction features excellent selectivity and impressive reactivity. It proceeds under mild conditions, avoiding the use of superstoichiometric amounts of additives and metal catalysts to simplify the synthetic procedure. The accessibility and scalability of the reaction allowed for the rapid construction of a ligand library for optimization of asymmetric Heck-type cyclization, laying the foundation for a broad range of applications of chiral BPMOs in catalysis.

15.
Mater Horiz ; 11(8): 1957-1963, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38348621

Fixation of CO2 into dihydroisobenzofuran derivatives has enormous applications in both production of natural products and antidepressant drugs, and reducing the green-house effect. However, the relatively complicated multi-step processes limit the further expansion of such a valuable CO2 conversion strategy. Herein, we hierarchically modify the surface of Cu nanoparticles (NPs) with Ag NPs and the robust metal-organic framework (MOF), ZIF-8, and report the presence of the Cu-Ag yolk-shell nanoalloy based heterogeneous catalysts, Cu@Ag and Cu@Ag@ZIF-8. The latter exhibits a crystalline "raisin bread" structure and specific synergic activity for catalyzing the tandem reactions of intra-molecular H-transfer, C-C and C-O coupling, cyclization, and carboxylation from CO2, leading to the first non-homogeneous preparation of dihydroisobenzofuran derivatives in high yield, selectivity, and recyclability under mild conditions. Theoretical calculations elucidate the tandem reaction pathway synergically catalyzed by Cu@Ag@ZIF-8, which offers insights for designing multiphase catalysts towards both organic synthesis and CO2 fixation through tandem processes in one pot.

16.
Eur J Pharmacol ; 967: 176353, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38325798

Oral submucous fibrosis (OSF) is a chronic oral mucosal disease. The pathological changes of OSF include epithelial damage and subepithelial matrix fibrosis. This study aimed to reveal the epithelial injury mechanism of OSF. A histopathological method was used to analyze oral mucosal tissue from OSF patients and OSF rats. The expression of PDE12 in the oral epithelium was analyzed by immunohistochemistry. The epithelial-mesenchymal transition (EMT) and tight junction proteins in arecoline-treated HOKs were explored by western blotting. Epithelial leakage was assessed by transepithelial electrical resistance and lucifer yellow permeability. The expression of PDE12 and the mitochondrial morphology, mitochondrial permeability transition pore opening, mitochondrial membrane potential, and mitochondrial reactive oxygen species (mtROS) were evaluated in arecoline-induced HOKs. Oxidative phosphorylation (OXPHOS) complexes and ATP content were also explored in HOKs. The results showed significant overexpression of PDE12 in oral mucosal tissue from OSF patients and rats. PDE12 was also overexpressed and aggregated in mitochondria in arecoline-induced HOKs, resulting in dysfunction of OXPHOS and impaired mitochondrial function. An EMT, disruption of tight junctions with epithelial leakage, and extracellular matrix remodeling were also observed. PDE12 overexpression induced by PDE12 plasmid transfection enhanced the mtROS level and interfered with occludin protein localization in HOKs. Interestingly, knockdown of PDE12 clearly ameliorated arecoline-induced mitochondrial dysfunction and epithelial barrier dysfunction in HOKs. Therefore, we concluded that overexpression of PDE12 impaired mitochondrial OXPHOS and mitochondrial function and subsequently impaired epithelial barrier function, ultimately leading to OSF. We suggest that PDE12 may be a new potential target against OSF.


Mitochondrial Diseases , Oral Submucous Fibrosis , Animals , Humans , Rats , Arecoline/adverse effects , Arecoline/metabolism , Mitochondria , Mitochondrial Diseases/metabolism , Oral Submucous Fibrosis/chemically induced , Oral Submucous Fibrosis/metabolism , Oral Submucous Fibrosis/pathology , Oxidative Phosphorylation
17.
World J Diabetes ; 15(1): 72-80, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38313857

BACKGROUND: Intracranial atherosclerosis, a leading cause of stroke, involves arterial plaque formation. This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging (HR-VWI). AIM: To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI. METHODS: Ninety-four patients diagnosed with middle cerebral artery or basilar artery atherosclerosis were enrolled. Their basic clinical data were collected, and HR-VWI was performed. The vascular area at the plaque (VAMLN) and normal reference vessel (VAreference) were delineated and measured using image postprocessing software, and the Remodelling index (RI) was calculated. According to the value of the RI, the patients were divided into a positive remodelling (PR) group, intermediate remodelling (IR) group, negative remodelling (NR) group, PR group and non-PR (N-PR) group. RESULTS: The PR group exhibited a higher prevalence of diabetes and serum cholesterol levels than the IR and NR groups [45.2%, 4.54 (4.16, 5.93) vs 25%, 4.80 ± 1.22 and 16.4%, 4.14 (3.53, 4.75), respectively, P < 0.05]. The diabetes incidence was also significantly greater in the PR group than in the N-PR group (45.2% vs 17.5%, P < 0.05). Furthermore, the PR group displayed elevated serum triglyceride and cholesterol levels compared to the N-PR group [1.64 (1.23, 2.33) and 4.54 (4.16, 5.93) vs 4.54 (4.16, 5.93) and 4.24 (3.53, 4.89), P < 0.05]. Logistic regression analysis revealed diabetes mellitus as an independent influencing factor in plaque-PR [odds ratio (95% confidence interval): 3.718 (1.207-11.454), P < 0.05]. CONCLUSION: HR-VWI can clearly show the morphology and signal characteristics of intracranial vascular walls and plaques. Intracranial atherosclerotic plaques in diabetic patients are more likely to show PR, suggesting poor plaque stability and a greater risk of stroke.

18.
Biochem Biophys Res Commun ; 693: 149199, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38118311

With economic development and overnutrition, including high-fat diets (HFD) and high-glucose diets (HGD), the incidence of obesity in children is increasing, and thus, the incidence of precocious puberty is increasing. Therefore, it is of great importance to construct a suitable animal model of overnutrition-induced precocious puberty for further in-depth study. Here, we fed a HFD, HGD, or HFD combined with a HGD to pups after P-21 weaning, while weaned pups fed a normal diet served as the control group. The results showed that HFD combined with a HGD increased the body weight (BW) of weaned rat pups. In addition, a HFD, HGD, and HFD combined with a HGD lowered the age at which vaginal opening occurred and accelerated the vaginal cell cycle. Furthermore, a HFD combined with a HGD increased the weight of the uterus and ovaries of weaned rat pups. Additionally, a HFD combined with a HGD promoted the development of reproductive organs in weaned female rat pups. Ultimately, a HFD combined with a HGD was found to elevate the serum levels of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle stimulating hormone (FSH), leptin, adiponectin, and oestradiol (E2) and increase hypothalamic GnRH, Kiss-1, and GPR54 expression levels in weaned female rat pups. The current study found that overnutrition, such as that through a HFD combined with HGD, could induce precocious puberty in weaned female rat pups. In addition, a rat model of overnutrition-induced precocious puberty was established.


Pediatric Obesity , Puberty, Precocious , Humans , Child , Animals , Rats , Female , Rats, Sprague-Dawley , Puberty, Precocious/chemically induced , Pediatric Obesity/complications , Gonadotropin-Releasing Hormone , Diet, High-Fat/adverse effects , Glucose
19.
J Chem Inf Model ; 63(24): 7755-7767, 2023 Dec 25.
Article En | MEDLINE | ID: mdl-38048439

The accurate prediction of the binding affinities between small molecules and biological macromolecules plays a fundamental role in structure-based drug design, which is still challenging. The free energy perturbation-based absolute binding free energy (FEP-ABFE) approach has shown potential in its reliability. To correctly calculate the energy related to the ligand being restrained by the receptor, additional restraints between the ligand and the receptor are needed. However, determining the restraint parameters for individual ligands empirically is too trivial to be automated, and usually gives rise to numerical instabilities, which set back the applications of FEP-ABFE. To address these issues, we derived the analytical expression for the probability distribution of energy differences, P(ΔU), during the process of restraint addition, which is called the RED-E (restraint energy distribution at equilibrium position) function. Simulations indicated that the RED-E function can accurately describe P(ΔU) when restraints are added at the equilibrium position. Based on the RED-E function, an automatic restraint selection method was proposed to select the best restraint. With this method, there is a high phase-space overlap between the free and restrained states, such that using a 2-λ perturbation can accurately calculate the free energy of the restraint addition, which is a nearly 6 times acceleration compared with current widely used 12-λ perturbation method. The RED-E function gives insight into the non-Gaussian behavior of the sampled P(ΔU) in certain FEP processes in an analytical way. The highly automated and accelerated restraint selection also makes it possible for the large-scale application of FEP-ABFE in real drug discovery practices.


Molecular Dynamics Simulation , Thermodynamics , Ligands , Reproducibility of Results , Entropy
20.
Singapore Med J ; 2023 Nov 03.
Article En | MEDLINE | ID: mdl-38037774

Introduction: This study aimed to evaluate the role of screening computed tomography (CT) of the thorax in cardiac surgery by analysing the presence of CT aortic calcifications in association with changes in operative strategy and postoperative stroke, and the CT features of emphysema with development of pneumonia. Methods: All patients who underwent cardiac surgery from January 2013 to October 2017 by a single surgeon were retrospectively studied. Patients who underwent screening CT thorax before cardiac surgery (CT group) were compared to those who did not (no CT group). Multivariate subgroup analyses were performed to determine significant association with postoperative outcomes. Results: A total of 392 patients were included, of which 156 patients underwent preoperative screening CT thorax. Patients in the CT group were older (63.9 vs. 59.0 years, P = 0.001), had fewer recent myocardial infarctions preoperatively (41% vs. 56.4%, P = 0.003) and had better ejection fraction (>30%; P = 0.02). Operative strategy was changed in 4.3% of patients, and 4.9% of patients suffered stroke postoperatively. The presence of CT aortic calcifications was significantly associated with change in operative strategy (P = 0.016) but not with postoperative stroke (P = 0.33). Age was an independent risk factor for change in operative strategy among patients with CT thorax (P = 0.02). Multivariate age-adjusted analysis showed only palpable plaque to be significantly associated with change in operative strategy (P < 0.001). None of the patients with CT emphysema features developed pneumonia. Conclusion: The results of this study do not support routine use of preoperative screening CT thorax. Contrasted CT may be advisable in older patients and for other operative planning purposes.

...