Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
Food Res Int ; 188: 114507, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823882

The microorganisms of the pit mud (PM) of Nongxiangxing baijiu (NXXB) have an important role in the synthesis of flavor substances, and they determine attributes and quality of baijiu. Herein, we utilize metagenomics and genome-scale metabolic models (GSMMs) to investigate the microbial composition, metabolic functions in PM microbiota, as well as to identify microorganisms and communities linked to flavor compounds. Metagenomic data revealed that the most prevalent assembly of bacteria and archaea was Proteiniphilum, Caproicibacterium, Petrimonas, Lactobacillus, Clostridium, Aminobacterium, Syntrophomonas, Methanobacterium, Methanoculleus, and Methanosarcina. The important enzymes ofPMwere in bothGH and GT familymetabolism. A total of 38 high-quality metagenome-assembled genomes (MAGs) were obtained, including those at the family level (n = 13), genus level (n = 17), and species level (n = 8). GSMMs of the 38 MAGs were then constructed. From the GSMMs, individual and community capabilities respectively were predicted to be able to produce 111 metabolites and 598 metabolites. Twenty-three predicted metabolites were consistent with the metabonomics detected flavors and served as targets. Twelve sub-community of were screened by cross-feeding of 38 GSMMs. Of them, Methanobacterium, Sphaerochaeta, Muricomes intestini, Methanobacteriaceae, Synergistaceae, and Caloramator were core microorganisms for targets in each sub-community. Overall, this study of metagenomic and target-community screening could help our understanding of the metabolite-microbiome association and further bioregulation of baijiu.


Bacteria , Metagenomics , Microbiota , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Archaea/genetics , Archaea/metabolism , Archaea/classification , Flavoring Agents/metabolism , Metagenome
2.
Food Microbiol ; 122: 104556, 2024 Sep.
Article En | MEDLINE | ID: mdl-38839235

Wickerhamomyces anomalus is one of the most important ester-producing strains in Chinese baijiu brewing. Ethanol and lactic acid are the main metabolites produced during baijiu brewing, but their synergistic influence on the growth and ester production of W. anomalus is unclear. Therefore, in this paper, based on the contents of ethanol and lactic acid during Te-flavor baijiu brewing, the effects of different ethanol concentrations (3, 6, and 9% (v/v)) combined with 1% lactic acid on the growth and ester production of W. anomalus NCUF307.1 were studied and their influence mechanisms were analyzed by transcriptomics. The results showed that the growth of W. anomalus NCUF307.1 under the induction of lactic acid was inhibited by ethanol. Although self-repair mechanism of W. anomalus NCUF307.1 induced by lactic acid was initiated at all concentrations of ethanol, resulting in significant up-regulation of genes related to the Genetic Information Processing pathway, such as cell cycle-yeast, meiosis-yeast, DNA replication and other pathways. However, the accumulation of reactive oxygen species and the inhibition of pathways associated with carbohydrate and amino acid metabolism may be the main reason for the inhibition of growth in W. anomalus NCUF307.1. In addition, 3% and 6% ethanol combined with 1% lactic acid could promote the ester production of W. anomalus NCUF307.1, which may be related to the up-regulation of EAT1, ADH5 and TGL5 genes, while the inhibition in 9% ethanol may be related to down-regulation of ATF2, EAT1, ADH2, ADH5, and TGL3 genes.


Esters , Ethanol , Fermentation , Lactic Acid , Saccharomycetales , Ethanol/metabolism , Lactic Acid/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/drug effects , Saccharomycetales/growth & development , Esters/metabolism , Transcriptome , Gene Expression Regulation, Fungal/drug effects , Gene Expression Profiling
3.
Bioresour Bioprocess ; 11(1): 24, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38647595

Butyric acid is a volatile saturated monocarboxylic acid, which is widely used in the chemical, food, pharmaceutical, energy, and animal feed industries. This study focuses on producing butyric acid from pre-treated rape straw using simultaneous enzymatic hydrolysis semi-solid fermentation (SEHSF). Clostridium beijerinckii BRM001 screened from pit mud of Chinese nongxiangxing baijiu was used. The genome of C. beijerinckii BRM001 was sequenced and annotated. Using rape straw as the sole carbon source, fermentation optimization was carried out based on the genomic analysis of BRM001. The optimized butyric acid yield was as high as 13.86 ± 0.77 g/L, which was 2.1 times higher than that of the initial screening. Furthermore, under optimal conditions, non-sterile SEHSF was carried out, and the yield of butyric acid was 13.42 ± 0.83 g/L in a 2.5-L fermentor. This study provides a new approach for butyric acid production which eliminates the need for detoxification of straw hydrolysate and makes full use of the value of fermentation waste residue without secondary pollution, making the whole process greener and more economical, which has a certain industrial potential.

4.
J Sci Food Agric ; 104(9): 5338-5349, 2024 Jul.
Article En | MEDLINE | ID: mdl-38334451

BACKGROUND: Bacillus velezensis DQA21 is a functional strain used in the fermentation process of strong-aroma baijiu; however, its specific role in the process is still unclear. RESULTS: In this study, specific roles of B. velezensis DQA21 in the fermentation process were explored. Bioaugmentation of B. velezensis DQA21 increased the diversity and abundance of the bacterial community during the first 32 days of fermentation and significantly inhibited the diversity and richness of the fungal community during days 12 to 32. According to cluster analysis, changes in the microbial community structure were observed during fermentation, and the fermentation process could be divided into two stages: stage I, days 0-12; and stage II, days 12-45. Additionally, the microbial community structures during the two fermentation stages were significantly different. Co-occurrence analysis showed that bioaugmentation with Bacillus increased the correlation between microorganisms in jiupei and had a significant impact on the overall network structure of the microbial community. In addition, Bacillus significantly increased the production of flavor substances in jiupei, causing the total esters, total alcohols, and total acids contents to increase by 19.1%, 81.1%, and 25.9% respectively. CONCLUSION: The results suggested that bioaugmentation with B. velezensis DQA21 had a strong impact on the microbial community structure in strong-aroma baijiu, enhancing the volatile flavor components. Additionally, the work also provides a better understanding on the effect of augmentation on the microbial community in jiupei, which could help better regulation of solid-state fermentation in strong-aroma baijiu. © 2024 Society of Chemical Industry.


Bacillus , Fermentation , Flavoring Agents , Microbiota , Taste , Bacillus/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Fungi/metabolism , Odorants/analysis
5.
Food Chem ; 446: 138845, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38401298

Gas mixtures are comprised of numerous complex components, making the accurate identification a continuing challenge due to the significant limitations of existing detection methods. Herein, we developed a low-cost and sensitive pattern-based colorimetric sensor array chip for the identification of typical gas mixtures - Baijiu aroma. Specifically, three nanomaterials (AuNPs, MoS2 and ZIF-8) were prepared to adsorb gas molecules and enhance the reaction of trace gases with sensor arrays. The colorimetric sensor array chip took only 5 min to complete the recognition of Baijiu aromas and effectively avoided recognition errors caused by sommelier olfactory fatigue. Notably, the hierarchical cluster analysis (HCA) revealed no confusion or errors in the results of 80 tests across the five trials involving 16 commercial Baijius. Even fake Baijius with similar ingredients could be easily identified, demonstrating the excellent analytical capabilities of the system in Baijiu identification and its significant potential for quality control of Baijius.


Metal Nanoparticles , Odorants , Colorimetry/methods , Gold , Cluster Analysis
6.
Heliyon ; 10(2): e24605, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38312678

Ferulic acid (FA) and ferulic acid methyl ester (FAM) are important phenolic compounds in Baijiu. In this study, the interaction of FA and FAM with human serum albumin (HSA) and lysozyme (LZM) was investigated using multispectral methods and molecular dynamics simulation. FA and FAM could interact with HSA and LZM, changing the conformation and hydrophilicity of the protein. The quenching mechanisms of FA-HSA, FA-LZM, FAM-HSA, and FAM-LZM were all static-quenching. In the FA-HSA, FAM-HSA, and FA-LZM systems, the interaction forces were mainly hydrophobic interactions and hydrogen bonding. In the FAM-LZM system, the interaction forces were mainly hydrophobic interactions, hydrogen bonding, and van der Waals force. Common metal ions such as K+, Ca2+, Cu2+, Mg2+, and Mn2+ could affect the binding ability of FA and FAM to HSA and LZM. Moreover, FA and FAM could increase the stability of HSA and LZM, and the protein bound to FA/FAM was more stable than the free protein. FA and FAM had varying degrees of impact on the physiological activities of HSA and LZM. This study provides relevant information on the interactions and metabolic mechanisms of FA and its derivatives with endogenous proteins.

7.
J Sci Food Agric ; 104(9): 5021-5030, 2024 Jul.
Article En | MEDLINE | ID: mdl-38296914

BACKGROUND: Baijiu brewing is a complex and multifaceted multimicrobial co-fermentation process, in which various microorganisms interact to form an interdependent micro-ecosystem, subsequently influencing metabolic activities and compound production. Among these microorganisms, Bacillus, an important bacterial genus in the liquor brewing process, remains unclear in its role in shaping the brewing microbial community and its functional metabolism. RESULTS: A baijiu fermentation system was constructed using B. subtilis JP1 isolated from native jiupei (grain mixture) combined with daqu (a saccharifying agent) and huangshui (a fermentation byproduct). Based on high-throughput amplicon sequencing analysis, it was evident that B. subtilis JP1 significantly influences bacterial microbial diversity and fungal community structure in baijiu fermentation. Of these, Aspergillus and Monascus emerge as the most markedly altered microbial genera in the jiupei community. Based on co-occurrence networks and bidirectional orthogonal partial least squares discriminant analysis models, it was demonstrated that the addition of B. subtilis JP1 intensified microbial interactions in jiupei fermentation, consequently enhancing the production of volatile flavor compounds such as heptanoic acid, butyl hexanoate and 3-methylthiopropanol in jiupei. CONCLUSION: B. subtilis JP1 significantly alters the microbial community structure of jiupei, enhancing aroma formation during fermentation. These findings will contribute to a broader application in solid-state fermentation. © 2024 Society of Chemical Industry.


Bacillus subtilis , Fermentation , Bacillus subtilis/metabolism , Microbiota , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Metabolome , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Alcoholic Beverages/microbiology , Alcoholic Beverages/analysis , Aspergillus/metabolism , Aspergillus/isolation & purification , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Fungi/metabolism , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Monascus/metabolism , Monascus/genetics
8.
Anal Chim Acta ; 1289: 342155, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38245196

Using an assemble-able MOF material, we successfully constructed an ultra-sensitive electrochemical sensor based on Bi2CuO4@Al-MOF@UiO-67 nanocomposite material, in order to investigate the adsorption properties of the Bi2CuO4@Al-MOF@UiO-67 functional material on the heavy metal ion. The Cd2+, Cu2+, Pb2+ and Hg2+ can be detected at the same time. Selective recognition and enrichment of various metal ions on different substrates can be achieved through the assembly of a large number of Al-MOF and UiO-67-MOF nanomaterial composites with small particle sizes on the Bi2CuO4 surface. Based on this, a new type of sensor is researched and prepared, which has been shown to have good stability and reproducibility. Due to its unique assembly structure, large active surface area, excellent adsorption capacity, and high electrical conductivity, Bi2CuO4@Al-MOF@UiO-67 presents outstanding performance. In addition, the sensor also exhibits excellent electrocatalytic redox capacity and high selectivity. The adsorption capacity of Cd2+, Cu2+, Pb2+ and Hg2+ is also significantly improved under the action of the sensor electrode, however, this is not the case. The limits of detection for Cd2+, Cu2+, Pb2+ and Hg2+ were found to be 0.02 pM, 0.032 pM, 0.018 pM and 0.041 pM, respectively. In order to investigate the detection mechanism of Cd2+, Cu2+, Pb2+ and Hg2+ was adsorption properties as well as electrochemical accumulation of Bi2CuO4@Al-MOF@UiO-67 on the metal atoms were investigated. This method has been successfully applied to samples of rice, sorghum, maize, milk, honey, and tea, and has enabled the simultaneous detection of Cd2+, Cu2+, Pb2+ and Hg2+, which is of significant practical value.


Mercury , Metal-Organic Frameworks , Metals, Heavy , Nanocomposites , Cadmium/chemistry , Reproducibility of Results , Lead , Nanocomposites/chemistry , Ions
9.
Food Chem ; 442: 138316, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38266410

The classification and verification of segmented Baijiu hold significant importance as they profoundly influence the blending and overall quality of the Baijiu. Our scholarly investigation yielded a fluorescent sensor with three luminescent modes by integrating Tb3+ and RHB into UiO-66. The interplay between carboxyl-containing compounds and RHB/Tb@TLU-2 orchestrates a harmonious molecular association, where the convergence of carboxyl groups with Tb3+ yields a resonating impact on the antenna effect of BDC-SO3-. Furthermore, the acidity and alkalinity of reactants induced a charge transfer interaction between BDC-NH2 and Zr4+ and led to structural changes in RHB/Tb@TLU-2, resulting in observable fluorescence signal variations across the three emission centers. The sensor array successfully identified eight organic acids, achieving an impressive 97.5 % accuracy in discerning segmented Baijiu samples from four Baijiu pits. This meticulous methodology prioritizes simplicity, swiftness, and effectiveness, paving the path for comprehensive segmented Baijiu analysis in the esteemed realm of Brewing production.


Coloring Agents , Luminescence , Fluorescence
10.
Food Chem ; 439: 138157, 2024 May 01.
Article En | MEDLINE | ID: mdl-38081097

Nanozymes were nanomaterials with enzymatic properties. They had diverse functions, adjustable catalytic activity, high stability, and easy large-scale production, attracting interest in biosensing. However, nanozymes were scarcely applied in Baijiu identification. Herein, a colorimetric and fluorometric dual-signal determination mediated by a nanozyme-H2O2-TMB system was developed for the first time to identify organics and Baijiu. Since the diverse peroxidase-like activity of nanozymes, resulted in different degrees of oxidized TMB. Based on this, 21 organics were identified qualitatively and quantitatively by colorimetric method with a rapid response (<12 min), broad linearity (0.0005-35 mM), and low detection limits (a minimum of 30 nM for glutaric acids). Furthermore, the fluorometric method exhibited excellent potential for accurate determination of organics, with detection ranges of 2-200 µmol/L (LOD: 0.22 µmol/L) for l-ascorbic acid and 2-300 µmol/L (LOD: 0.59 µmol/L) for guaiacol. Finally, the sensor was successfully applied to identify fake Baijiu and Baijiu from 16 different brands.


Glucose , Hydrogen Peroxide , Colorimetry/methods , Fluorometry , Peroxidases , Peroxidase
11.
J Sci Food Agric ; 104(2): 778-787, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-37669104

BACKGROUND: Nongxiangxing baijiu (NB) is known for its distinct flavor profile, which is attributed to key aroma compounds. The exposed fermentation technique, utilizing daqu and solid-state fermentation in pit muds, plays a crucial role in flavor development. Though previous studies have investigated the impact of microorganisms from pit ?ud and fermented grains on flavor compound production, a comprehensive understanding of microbial functions in the entire pit fermentation system is lacking. Herein, we aimed to explore the role of pit-mud-derived microorganisms in shaping the microbial community and flavor compound synthesis in NB. RESULTS: There are 76 volatile flavor compounds that have been identified in fermented grains during NB fermentation. The main flavor compounds in NB clustered within the same network module, and 27.27% of microorganisms in the core modules of the fermented grain co-occurrence network originated from pit mud. The relationship between pit mud microorganisms and flavor compounds revealed a significant positive correlation (92%). Notably, Prevotella and Sarocladium were identified as the main contributors to this effect on flavor. CONCLUSION: Microorganisms originating from pit mud influenced the composition and activity of microorganisms in fermented grains and facilitated the production of flavor compounds in NB. © 2023 Society of Chemical Industry.


Alcoholic Beverages , Microbiota , Alcoholic Beverages/analysis , Fermentation
12.
Food Chem X ; 20: 101044, 2023 Dec 30.
Article En | MEDLINE | ID: mdl-38144852

The thermophilic phase of Daqu fermentation is considered the key period for aroma production in Daqu, but little is known about the changes in substances during this phase. In this study, we combined a metabolomics approach with high-throughput sequencing to analyze the metabolic profiles and identify metabolism-associated microbes during the thermophilic phase of Daqu fermentation. The results revealed that the metabolic sets after 5 and 9 days of fermentation in the thermophilic phase were similar, and several amino acid and biosynthesis-related metabolic pathways were significantly enriched. In addition, pyrazines and alkanes increased and esters decreased significantly after the thermophilic phase. The metabolism of substances during the thermophilic phase involved 38 genera, and the main metabolic pathways involved were glycolysis, TCA cycle, butyric acid metabolism, and five amino acid metabolic pathways. In summary, this study points in the direction for unravelling the mechanism of aroma production in Daqu.

13.
Anal Methods ; 15(43): 5891-5900, 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37905962

The identification of Chinese baijiu is crucial to regulating the international market and maintaining legitimate rights, as the popularity, influence and awareness of baijiu are growing. A graphene quantum dot (GQD) based fluorescence sensor array is designed in this paper. Upon using only GQDs as a single sensing element, combining three different solvents improves the sensing array's detection sensitivity while simplifying material preparation and experimental detection. Adding organic substances creates intermolecular forces between the GQDs and the solvent, causing the fluorescence intensity to change. The sensor array was able to distinguish 21 types of organic matter, different ratios of quaternary mixed organic materials and 17 types of baijiu of the same brand. It also showed excellent performance in the detection of species in blind samples, with the machine learning algorithm successfully distinguishing baijiu from five other distilled spirits. The experiment provides guidance for the practical application of GQDs and provides a simple but effective reference for sensor arrays to detect baijiu.

14.
J Microbiol Biotechnol ; 33(10): 1337-1350, 2023 Oct 28.
Article En | MEDLINE | ID: mdl-37583080

Caproic acid is a precursor substance for the synthesis of ethyl caproate, the main flavor substance of nongxiangxing baijiu liquor. In this study, Clostridium butyricum GD1-1, a strain with high caproic acid concentration (3.86 g/l), was isolated from the storage pit mud of nongxiangxing baijiu for sequencing and analysis. The strain's genome was 3,840,048 bp in length with 4,050 open reading frames. In addition, virulence factor annotation analysis showed C. butyricum GD1-1 to be safe at the genetic level. However, the annotation results using the Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server predicted a deficiency in the strain's synthesis of alanine, methionine, and biotin. These results were confirmed by essential nutrient factor validation experiments. Furthermore, the optimized medium conditions for caproic acid concentration by strain GD1-1 were (g/l): glucose 30, NaCl 5, yeast extract 10, peptone 10, beef paste 10, sodium acetate 11, L-cysteine 0.6, biotin 0.004, starch 2, and 2.0% ethanol. The optimized fermentation conditions for caproic acid production by C. butyricum GD1-1 on a single-factor basis were: 5% inoculum volume, 35°C, pH 7, and 90% loading volume. Under optimal conditions, the caproic acid concentration of strain GD1-1 reached 5.42 g/l, which was 1.40 times higher than the initial concentration. C. butyricum GD1-1 could be further used in caproic acid production, NXXB pit mud strengthening and maintenance, and artificial pit mud preparation.


Clostridium butyricum , Clostridium butyricum/genetics , Biotin , Alcoholic Beverages , Ethanol , Fermentation
15.
Biotechnol Lett ; 45(9): 1183-1197, 2023 Sep.
Article En | MEDLINE | ID: mdl-37436533

OBJECTIVES: The microbial community structure of the saccharifying starter, Nongxiangxing Daqu(Daqu), is a crucial factor in determining Baijiu's quality. Lactic acid bacteria (LAB), are the dominant microorganisms in the Daqu. The present study investigated the effects of LAB on the microbial community structure and its contribution to microbial community function during the fermentation of Daqu. METHODS: The effect of LAB on the structure and function of the microbial community of Daqu was investigated using high-throughput sequencing technology combined with multivariate statistical analysis. RESULTS: LAB showed a significant stage-specific evolution pattern during Daqu fermentation. The LEfSe analysis and the random forest learning algorithm identified LAB as vital differential microorganisms during Daqu fermentation. The correlation co-occurrence network showed aggregation of LAB and Daqu microorganisms, indicating LAB's significant position in influencing the microbial community structure, and suggests that LAB showed negative correlations with Bacillus, Saccharopolyspora, and Thermoactinomyces but positive correlations with Issatchenkia, Candida, Acetobacter, and Gluconobacter. The predicted genes of LAB enriched 20 functional pathways during Daqu fermentation, including Biosynthesis of amino acids, Alanine, aspartate and glutamate metabolism, Valine, leucine and isoleucine biosynthesis and Starch and sucrose metabolism, which suggested that LAB had the functions of polysaccharide metabolism and amino acid biosynthesis. CONCLUSION: LAB are important in determining the composition and function of Daqu microorganisms, and LAB are closely related to the production of nitrogenous flavor substances in Daqu. The study provides a foundation for further exploring the function of LAB and the regulation of Daqu quality.


Bacillus , Lactobacillales , Microbiota , Lactobacillales/genetics , Bacteria/genetics , Bacteria/metabolism , Fermentation , Alcoholic Beverages/microbiology
16.
Food Chem ; 422: 136080, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37150116

An acid-sensitive carbon dot fluorescence sensing array was investigated for the differentiated recognition of distilled spirits. Due to the electrostatic interactions between CDs and organic acids, organic acids affect the protonation and fluorescence properties of CDs, which in turn modify the CDs triple fluorescence emission. The regular linear variation of the fluorescence sensor was found under acidic conditions (3.0 < pH < 6.2). A comprehensive study of acids with selectivity, different concentrations (0.1 mM, 1 mM, 10 mM, 40 mM), different types (8 species) and mixed acids (formic acid and acetic acid), and good quantification capability for acetic acid (0.01-1 mM). Demonstrating good recognition ability of the sensor array for complex analyte. On this basis, the fluorescence sensor array was applied to the classification and recognition of liquors. LDA has realized the identification of 16 kinds of Baijiu and 21 kinds of distilled liquors with an accuracy of 100%.


Quantum Dots , Spectrometry, Fluorescence , Quantum Dots/chemistry , Carbon/chemistry , Acetic Acid , Fluorescent Dyes/chemistry
17.
Biosens Bioelectron ; 230: 115263, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37003060

Capturing, identifying, and counting CTCs cancer cells that have escaped from the tumor and wandered into the bloodstream is a major challenge. We proposed a noval microswimmer dual-mode aptamer (electrochemical and fluorescent)-(Mapt-EF) homogeneous sensor with active capture/controlled release double signaling molecule/separation and release cell based on the Co-Fe-MOF nanomaterial for simultaneous one-step detection of multiple biomarkers protein tyrosine kinase-7 (PTK7), Epithelial cell adhesion molecule (EpCAM), and mucin-1 (MUC1) for diagnosis of multiple cancer cell types. The Co-Fe-MOF is a nano-enzyme capable of catalyzing the decomposition of hydrogen peroxide to release bubbles of oxygen, producing a driving force to conduct hydrogen peroxide through the liquid, and has the capacity to self-decompose during the catalytic process. Phosphoric acid is present in the aptamer chains of PTK7, EpCAM, and MUC1, and the aptamer chains are adsorbed to the surface of the Mapt-EF homogeneous sensor in the form of a gated switch to inhibit the catalytic decomposition activity of hydrogen peroxide. The Mapt-EF homogeneous sensor has the capability to actively target biomarkers that can be entrained by oxygen bubbles without being degraded. The detection time of the sensor was 20 min, the detection limits were 9.6 fg/mL, 8.4 fg/mL and 7.7 fg/mL with the linear range was 0-20 pg/mL, respectively. The Mapt-EF homogeneous sensor has high detection sensitivity, and its detection limit can reach the level of single cell at the lowest. The Mapt-EF homogeneous sensor has great application potential in clinical detection and analysis of tumor cells.


Aptamers, Nucleotide , Biosensing Techniques , Neoplasms , Epithelial Cell Adhesion Molecule , Hydrogen Peroxide , Aptamers, Nucleotide/chemistry , Electrochemical Techniques , Limit of Detection , Neoplasms/diagnosis
18.
Food Chem ; 421: 136131, 2023 Sep 30.
Article En | MEDLINE | ID: mdl-37086516

Here, we constructed a novel ultra-sensitive electrochemical sensor based on ZIF-67@antimonene (AMNFs) nanocomposites which are based on the first-principles density functional theory the adsorption properties of antimonene on heavy metal ions were studied for simultaneous determination of Cu2+, Pb2+ and Hg2+. The ZIF-67@AMNFs was prepared by using ZIF-67 MOF surface loaded with a large amount of antimonene sheet. Its morphology and crystal structure were characterized by Transmission electron microscope (TEM), Energy Dispersive Spectroscopy (EDS), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). Functional ZIF-67@AMNFs due to its unique layered structure, large active surface area, strong adsorption capacity and good electrical conductivity. In addition, the adsorption capacity of the sensor electrode for Cu2+, Pb2+ and Hg2+ was effectively enhanced. The detection limits of Cu2+, Pb2+ and Hg2+ were 0.01 pM, 0.042 pM and 0.031 pM, respectively. The determination mechanism of Cu2+, Pb2+ and Hg2+ was further clarified based on the adsorption properties and electrochemical accumulation of antimonene on metal atoms. It has been successfully applied to the simultaneous determination of Cu2+, Pb2+ and Hg2+ in rice, sorghum, corn, milk, honey and tea samples, and has good practicability.


Mercury , Metals, Heavy , Nanocomposites , Lead , Mercury/chemistry , Ions , Nanocomposites/chemistry
19.
Food Chem ; 415: 135525, 2023 Jul 30.
Article En | MEDLINE | ID: mdl-36870207

In order to timely discriminate wheat with different mildew rates, a Dyes/Dyes-Cu-MOF paper-based colorimetric sensor array was designed. Using array points to capture volatile gases of wheat with different mildew rates, and output RGB values. The correlation between ΔR/ΔG/ΔB values and odor components was established. The ΔG values of array points 2' and 3' showed the best correlation with mildew rate, with R2 of 0.9816 and 0.9642. The ΔR value of 3 and the ΔG value of 2 correlate well with the mildew rate, with R2 of 0.9625 and 0.9502, respectively. Then, the ΔRGB values are subjected to pattern recognition processing, and LDA achieves 100% correct discrimination for all samples, or divides high and low mildew areas. This method provides an odor-based monitoring tool for fast, visual and nondestructive evaluation of food safety and quality through visualization of odors produced by different mildew rates.


Coloring Agents , Triticum , Colorimetry/methods , Fungi , Gases
20.
Food Chem ; 417: 135888, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-36917907

Quickly discriminating different segmented Baijiu can directly control its grade and indirectly affect the quality of the finished Baijiu. A fluorescence sensor array was constructed based on PEI-terminated silver nanoparticles and lanthanide metal ions (PEI@Ag NPs@Ln). Ag NPs were stably dispersed in the PEI-woven network, initially accompanied by excellent fluorescence signals. Organic molecules disrupted the PEI structure and dragged the Ag NPs out. The free Ag NPs sintered or aggregated with the diffusion, resulting in fluorescence quenching. The three lanthanide ions speed up the process, allowing different organic molecules to exhibit more distinct signals. Thus, this sensor was used to map 11 organic molecules' fingerprints and to discriminate segmented Baijiu. The whole process takes only 2 min. With the assistance of pattern recognition, segmented Baijiu from three cellars were successfully discriminated. Fast, effective and simple are highlights, which opens up its practical application potential in the detection field.


Metal Nanoparticles , Metal Nanoparticles/chemistry , Fluorescent Dyes , Silver/chemistry , Ions/chemistry , Spectrum Analysis, Raman
...