Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 130: 111519, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38442573

RESUMEN

This study investigates the molecular mechanisms by which extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSCs) promote M2 polarization of macrophages and thus reduce lung injury caused by sepsis. High-throughput sequencing was used to identify differentially expressed genes related to long non-coding RNA (lncRNA) in ADSC-derived EVs (ADSC-EVs) in sepsis lung tissue. Weighted gene co-expression network analysis (WGCNA) was employed to predict the downstream target genes of the lncRNA DLEU2. The RNAInter database predicted miRNAs that interact with DLEU2 and LXN. Functional and pathway enrichment analyses were performed using GO and KEGG analysis. A mouse model of sepsis was established, and treatment with a placebo or ADSC-EVs was administered, followed by RT-qPCR analysis. ADSC-EVs were isolated and identified. In vitro cell experiments were conducted using the mouse lung epithelial cell line MLE-12, mouse macrophage cell line RAW264.7, and mouse lung epithelial cell line (LEPC). ADSC-EVs were co-cultured with RAW264.7 and MLE-12/LEPC cells to study the regulatory mechanism of the lncRNA DLEU2. Cell viability, proliferation, and apoptosis of lung injury cells were assessed using CCK-8, EdU, and flow cytometry. ELISA was used to measure the levels of inflammatory cytokines in the sepsis mouse model, flow cytometry was performed to determine the number of M1 and M2 macrophages, lung tissue pathology was evaluated by H&E staining, and immunohistochemistry was conducted to examine the expression of proliferation- and apoptosis-related proteins. High-throughput sequencing and bioinformatics analysis revealed enrichment of the lncRNA DLEU2 in ADSC-EVs in sepsis lung tissue. Animal and in vitro cell experiments showed increased expression of the lncRNA DLEU2 in sepsis lung tissue after treatment with ADSC-EVs. Furthermore, ADSC-EVs were found to transfer the lncRNA DLEU2 to macrophages, promoting M2 polarization, reducing inflammation response in lung injury cells, and enhancing their viability, proliferation, and apoptosis inhibition. Further functional experiments indicated that lncRNA DLEU2 promotes M2 polarization of macrophages by regulating miR-106a-5p/LXN, thereby enhancing the viability and proliferation of lung injury cells and inhibiting apoptosis. Overexpression of miR-106a-5p could reverse the biological effects of ADSC-EVs-DLEU2 on MLE-12 and LEPC in vitro cell models. Lastly, in vivo animal experiments confirmed that ADSC-EVs-DLEU2 promotes high expression of LXN by inhibiting the expression of miR-106a-5p, further facilitating M2 macrophage polarization and reducing lung edema, thus alleviating sepsis-induced lung injury. lncRNA DLEU2 in ADSC-EVs may promote M2 polarization of macrophages and enhance the viability and proliferation of lung injury cells while inhibiting inflammation and apoptosis reactions, thus ameliorating sepsis-induced lung injury in a mechanism involving the regulation of the miR-106a-5p/LXN axis.


Asunto(s)
Lesión Pulmonar , MicroARNs , Proteínas del Tejido Nervioso , ARN Largo no Codificante , Sepsis , Animales , Ratones , Apoptosis/genética , Modelos Animales de Enfermedad , Lesión Pulmonar/microbiología , Lesión Pulmonar/terapia , MicroARNs/genética , ARN Largo no Codificante/administración & dosificación , ARN Largo no Codificante/genética , Sepsis/complicaciones , Sepsis/genética , Proteínas del Tejido Nervioso/genética , Células Madre Mesenquimatosas , Exosomas , Masculino , Ratones Endogámicos C57BL
2.
ACS Biomater Sci Eng ; 10(2): 946-959, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38154081

RESUMEN

Extracellular vesicles (EVs) derived from human adipose mesenchymal stem cells (hADSCs) may exert a therapeutic benefit in alleviating sepsis-induced organ dysfunction by delivering cargos that include RNAs and proteins to target cells. The current study aims to explore the protective effect of miR-150-5p delivered by hADSC-EVs on sepsis-induced acute lung injury (ALI). We noted low expression of miR-150-5p in plasma and bronchoalveolar lavage fluid samples from patients with sepsis-induced ALI. The hADSC-EVs were isolated and subsequently cocultured with macrophages. It was established that hADSC-EVs transferred miR-150-5p to macrophages, where miR-150-5p targeted HMGA2 to inhibit its expression and, consequently, inactivated the MAPK pathway. This effect contributed to the promotion of M2 polarization of macrophages and the inhibition of proinflammatory cytokines. Further, mice were made septic by cecal ligation and puncture in vivo and treated with hADSC-EVs to elucidate the effect of hADSC-EVs on sepsis-induced ALI. The in vivo experimental results confirmed a suppressive role of hADSC-EVs in sepsis-induced ALI. Our findings suggest that hADSC-EV-mediated transfer of miR-150-5p may be a novel mechanism underlying the paracrine effects of hADSC-EVs on the M2 polarization of macrophages in sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Sepsis , Humanos , Animales , Ratones , Sepsis/complicaciones , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/terapia , MicroARNs/genética
3.
Cell Biol Toxicol ; 39(6): 3219-3234, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37812360

RESUMEN

Investigation on a competitive endogenous RNA (ceRNA) network attracted lots of attention due its function in cancer regulation. Here, we probed into the possible molecular mechanism of circSSPO/microRNA-6820-5p (miR-6820-5p)/kallikrein-related peptidase 8 (KLK8)/PKD1 network in the esophageal squamous cell carcinoma (ESCC). Following whole-transcriptome sequencing and differential analysis in collected ESCC tissue samples, circRNA-miRNA-mRNA regulatory network affecting ESCC was investigated. After interaction measurement among circSSPO/miR-6820-5p/KLK8/PKD1, their regulatory roles in ESCC cell functions in vitro and xenograft tumor growth and lung metastasis in vivo were analyzed. The bioinformatics prediction and sequencing results screened that circSSPO, miR-6820-5p, KLK8, and PKD1 were associated with ESCC development. In ESCC, miR-6820-5p was expressed at very low levels, while circSSPO, KLK8, and PKD1 were highly expressed. In vitro cell experiments further proved that circSSPO competitively inhibited miR-6820-5p to induce ESCC cell malignant properties. Moreover, knockdown of KLK8 or PKD1 inhibited ESCC cell malignant properties. circSSPO also promoted the tumorigenic and metastasis of ESCC through the upregulation of KLK8 and PKD1 expression in vivo. We found that circSSPO was an oncogenic circRNA that was significantly abundant in ESCC tissues and circSSPO exhibited an oncogenic activity in ESCC by elevating expression of KLK8 and PKD1 through suppressing miR-6820-5p expression.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , ARN Circular , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Calicreínas/genética , Calicreínas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Regulación hacia Arriba/genética
4.
Int Immunopharmacol ; 122: 110415, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37402340

RESUMEN

Monocyte-derived exosomes (Exos) have been implicated in inflammation-related autoimmune/inflammatory diseases via transferring bioactive cargoes to recipient cells. The purpose of this study was to investigate the possible effect of monocyte-derived Exos on the initiation and the development of acute lung injury (ALI) by delivering long non-coding RNA XIST. Key factors and regulatory mechanisms in ALI were predicted by bioinformatics methods. BALB/c mice were treated with lipopolysaccharide (LPS) to establish an ALI in vivo model and then injected with Exos isolated from monocytes transduced with sh-XIST to evaluate the effect of monocyte-derived exosomal XIST on ALI. HBE1 cells were co-cultured with Exos isolated from monocytes transduced with sh-XIST for further exploration of its effect. Luciferase reporter, RIP and RNA pull-down assays were performed to verify the interaction between miR-448-5p and XIST, miR-448-5p and HMGB2. miR-448-5p was significantly poorly expressed while XIST and HMGB2 were highly expressed in the LPS-induced mouse model of ALI. Monocyte-derived Exos transferred XIST into HBE1 cells where XIST competitively inhibited miR-448-5p and reduced the binding of miR-448-5p to HMGB2, thus upregulating the expression of HMGB2. Furthermore, in vivo data revealed that XIST delivered by monocyte-derived Exos downregulated miR-448-5p expression and up-regulated HMGB2 expression, ultimately contributing to ALI in mice. Overall, our results indicate that XIST delivered by monocyte-derived Exos aggravates ALI via regulating the miR-448-5p/HMGB2 signaling axis.


Asunto(s)
Lesión Pulmonar Aguda , MicroARNs , ARN Largo no Codificante , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Proteína HMGB2/genética , Monocitos/metabolismo , Lipopolisacáridos/efectos adversos , Factores de Transcripción , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/terapia , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA