Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
PeerJ ; 12: e16699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38274326

RESUMEN

Background: The change in the soil carbon bank is closely related to the carbon dioxide in the atmosphere, and the vegetation litter input can change the soil organic carbon content. However, due to various factors, such as soil type, climate, and plant species, the effects of vegetation restoration on the soil vary. Currently, research on aggregate-associated carbon has focused on single vegetation and soil surface layers, and the changes in soil aggregate stability and carbon sequestration under different vegetation restoration modes and in deeper soil layers remain unclear. Therefore, this study aimed to explore the differences and relationships between stability and the carbon preservation capacity (CPC) under different vegetation restoration modes and to clarify the main influencing factors of aggregate carbon preservation. Methods: Grassland (GL), shrubland (SL), woodland (WL), and garden plots (GP) were sampled, and they were compared with farmland (FL) as the control. Soil samples of 0-40 cm were collected. The soil aggregate distribution, aggregate-associated organic carbon concentration, CPC, and stability indicators, including the mean weight diameter (MWD), fractal dimension (D), soil erodibility (K), and geometric mean diameter (GMD), were measured. Results: The results showed that at 0-40 cm, vegetation restoration significantly increased the >2 mm aggregate proportions, aggregate stability, soil organic carbon (SOC) content, CPC, and soil erosion resistance. The >2 mm fractions of the GL and SL were at a significantly greater proportion at 0-40 cm than that of the other vegetation types but the CPC was only significantly different between 0 and 10 cm when compared with the other vegetation types (P < 0.05). The >2 mm aggregates showed a significant positive correlation with the CPC, MWD, and GMD (P < 0.01), and there was a significant negative correlation with the D and K (P < 0.05). The SOC and CPC of all the vegetation types were mainly distributed in the 0.25-2 mm and <0.25 mm aggregate fractions. The MWD, GMD, SOC, and CPC all gradually decreased with increasing soil depth. Overall, the effects of vegetation recovery on soil carbon sequestration and soil stability were related to vegetation type, aggregate particle size, and soil depth, and the GL and SL restoration patterns may be more suitable in this study area. Therefore, to improve the soil quality and the sequestration of organic carbon and reduce soil erosion, the protection of vegetation should be strengthened and the policy of returning farmland to forest should be prioritized.


Asunto(s)
Carbono , Suelo , Bosques , Plantas , China
2.
Huan Jing Ke Xue ; 44(12): 6880-6893, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098412

RESUMEN

Vegetation restoration affects the carbon cycle of terrestrial ecosystems by changing the rate of carbon input and conversion. In order to explore the evolution characteristics of soil active organic carbon components and carbon pool management index during vegetation restoration in karst areas, the soil of a grassland sequence(5, 10, 15, and 20 a), shrub sequence(5, 10, 15, and 20 a), and garden sequence(5, 10, and 15 a) in a karst area was taken as the research object, and the adjacent farmland was taken as the control(CK). The effects of different vegetation restoration years on the evolution of soil organic carbon(SOC), readily oxidizable organic carbon(ROC333, ROC167, and ROC33 were all soil active organic carbon that could be oxidized by 333, 167, and 33 mmol·L-1 KMnO4), microbial biomass carbon(MBC), dissolved organic carbon(DOC), and carbon pool management index(CPMI) were analyzed. The results showed that compared with that of CK, the average grassland, shrub, and garden SOC contents in the 0-40 cm soil layer increased by 70.77%, 114.40%, and 50.17%, respectively. In the 0-20 cm soil layer, with the increase in restoration years, the SOC content of the grassland sequence and garden sequence increased first and then decreased, and that of the shrub sequence increased first, then decreased, and then increased again. ROC333, ROC167, and ROC33 were consistent with the SOC change trend of the corresponding sequence. In the 20-40 cm soil layer, the change trend of ROC333, ROC167, and ROC33 of each sequence was inconsistent with the SOC of the corresponding sequence. In the 0-40 cm soil layer, the MBC content of the grassland sequence decreased first, then increased, and then decreased, and the maximum value of MBC in each soil layer was in G15. The shrub sequence in the 0-10 cm soil layer increased first, then decreased, and then increased, and in the 10-40 cm soil layer it increased first and then decreased. The garden sequence increased first and then decreased in the 0-30 cm soil layer and gradually increased in the 30-40 cm soil layer. Kos of the three sequences decreased first, then increased, and then decreased, whereas L and LI showed the opposite of Kos. CPI increased first and then decreased; the CPMI of the grassland and garden sequences increased first and then decreased, whereas the CPMI of the shrub sequence increased first, then decreased, and then increased again. The contents of SOC, ROC333, ROC167, ROC33, and MBC and the annual growth of Kos were shrub>grassland>orchard, and the annual growth of DOC and CPMI were orchard>grassland>shrub. The contents of SOC and its components in the three sequences decreased with the increase in soil layer and had obvious surface aggregation. Redundancy analysis showed that alkali-hydrolyzable nitrogen(AN) was the main environmental factor affecting soil active organic carbon components and soil organic carbon pool under the vegetation restoration in the karst area. In summary, soil active organic carbon components and CPMI evolved with vegetation restoration years. Different vegetation restorations could increase the content of SOC and its components in karst areas to a certain extent, and shrub restoration promotes the accumulation of SOC.

3.
J Genet ; 982019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31544776

RESUMEN

Genetic information of polymerase chain reaction (PCR)-based markers, one of the main tools of genetics and genomics research in wheat, have been well documented in wheat. However, the physical position in relation to these markers has not yet been systematically characterized. Aim of this study was to characterize the physical information of thousands of widely used molecular markers.We first assigned 2705 molecular markers to wheat physical map, of which 86.1% and 84.7% were the best hits to chromosome survey sequencing (CSS) project (CSS-contigs) and International Wheat Genome Sequencing Consortium Reference Sequence v1.0 (IWGSC RefSeq v1.0), respectively. Physical position of 96.2% markers were predicated based on BLAST analysis, were in accordance with that of the previous nullisomic/aneuploidy/linkage analysis. A suggestive high-density physical map with 4643 loci was constructed, spanning 14.01 Gb (82.4%) of the wheat genome, with 3.02 Mb between adjacent markers. Both forward and reverse primer sequences of 1166 markers had consistent best hits to IWGSC RefSeq v1.0 based on BLAST analysis, and the corresponding allele sizes were characterized. A detailed physical map with 1532 loci was released, spanning 13.93 Gb (81.9%) of the wheat genome, with 9.09 Mb between adjacent markers. Characteristic of recombination rates in different chromosomal regions was discussed. In addition, markers with multiple sites were aligned to homoeologous sites with a consistent order, confirming that a collinearity existed among A, B and D subgenomes. This study facilitates the integration of physical and genetical information of molecular markers, which could be of value for use in genetics and genomics research such as gene/QTL map-based cloning and marker-assisted selection.


Asunto(s)
Mapeo Físico de Cromosoma , Triticum/genética , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Reacción en Cadena de la Polimerasa , Recombinación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...