Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Immunol ; 14: 1094279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033976

RESUMEN

Immune responses to human non-self transgenes can present challenges in preclinical studies of adeno-associated virus (AAV) gene therapy candidates in nonhuman primates. Although anti-transgene immune responses are usually mild and non-adverse, they can confound pharmacological readouts and complicate translation of results between species. We developed a gene therapy candidate for Pompe disease consisting of AAVhu68, a clade F AAV closely related to AAV9, that expresses an engineered human acid-alpha glucosidase (hGAA) tagged with an insulin-like growth factor 2 variant (vIGF2) peptide for enhanced cell uptake. Rhesus macaques were administered an intravenous dose of 1x1013 genome copies (GC)/kg, 5x1013 GC/kg, or 1 x 1014 GC/kg of AAVhu68.vIGF2.hGAA. Some unusually severe adaptive immune responses to hGAA presented, albeit with a high degree of variability between animals. Anti-hGAA responses ranged from absent to severe cytotoxic T-cell-mediated myocarditis with elevated troponin I levels. Cardiac toxicity was not dose dependent and affected five out of eleven animals. Upon further investigation, we identified an association between toxicity and a major histocompatibility complex class I haplotype (Mamu-A002.01) in three of these animals. An immunodominant peptide located in the C-terminal region of hGAA was subsequently identified via enzyme-linked immunospot epitope mapping. Another notable observation in this preclinical safety study cohort pertained to the achievement of robust and safe gene transfer upon intravenous administration of 5x1013 GC/kg in one animal with a low pre-existing neutralizing anti-capsid antibodies titer (1:20). Collectively, these findings may have significant implications for gene therapy inclusion criteria.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Miocarditis , Humanos , Animales , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo , Dependovirus , Macaca mulatta/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia
2.
Genes Dev ; 32(19-20): 1344-1357, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30254108

RESUMEN

A fundamental challenge in understanding cardiac biology and disease is that the remarkable heterogeneity in cell type composition and functional states have not been well characterized at single-cell resolution in maturing and diseased mammalian hearts. Massively parallel single-nucleus RNA sequencing (snRNA-seq) has emerged as a powerful tool to address these questions by interrogating the transcriptome of tens of thousands of nuclei isolated from fresh or frozen tissues. snRNA-seq overcomes the technical challenge of isolating intact single cells from complex tissues, including the maturing mammalian hearts; reduces biased recovery of easily dissociated cell types; and minimizes aberrant gene expression during the whole-cell dissociation. Here we applied sNucDrop-seq, a droplet microfluidics-based massively parallel snRNA-seq method, to investigate the transcriptional landscape of postnatal maturing mouse hearts in both healthy and disease states. By profiling the transcriptome of nearly 20,000 nuclei, we identified major and rare cardiac cell types and revealed significant heterogeneity of cardiomyocytes, fibroblasts, and endothelial cells in postnatal developing hearts. When applied to a mouse model of pediatric mitochondrial cardiomyopathy, we uncovered profound cell type-specific modifications of the cardiac transcriptional landscape at single-nucleus resolution, including changes of subtype composition, maturation states, and functional remodeling of each cell type. Furthermore, we employed sNucDrop-seq to decipher the cardiac cell type-specific gene regulatory network (GRN) of GDF15, a heart-derived hormone and clinically important diagnostic biomarker of heart disease. Together, our results present a rich resource for studying cardiac biology and provide new insights into heart disease using an approach broadly applicable to many fields of biomedicine.


Asunto(s)
Perfilación de la Expresión Génica , Corazón/crecimiento & desarrollo , Miocardio/metabolismo , Transcriptoma , Animales , Cardiomiopatías/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Redes Reguladoras de Genes , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Enfermedades Mitocondriales/genética , Miocardio/citología , Miocitos Cardíacos/metabolismo , Análisis de Secuencia de ARN , Activación Transcripcional
3.
Mol Cell Biol ; 38(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30104250

RESUMEN

Growth differentiation factor 15 (GDF15) is a secreted protein with pleotropic functions from the transforming growth factor ß (TGF-ß) family. GDF15 is synthesized as a precursor and undergoes proteolytic cleavage to generate mature GDF15. The strong appetite-suppressing effect of mature GDF15 makes it an attractive therapeutic agent/target for diseases such as obesity and cachexia. In addition, clinical studies indicate that circulating, mature GDF15 is an independent biomarker for heart failure. We recently found that GDF15 functions as a heart-derived hormone that inhibits liver growth hormone signaling and postnatal body growth in the pediatric period. However, little is known about the mechanism of GDF15 maturation, in particular the enzymes that mediate GDF15 precursor cleavage. We investigated which candidate proteases can cleave GDF15 precursor and generate mature GDF15 in cardiomyocytes in vitro and mouse hearts in vivo We discovered that three members of the proprotein convertase, subtilisin/kexin-type (PCSK) family, namely, PCSK3, PCSK5, and PCSK6, can efficiently cleave GDF15 precursor, therefore licensing its maturation both in vitro and in vivo Our studies suggest that PCSK3, -5, and -6 mediate a crucial step of GDF15 maturation through proteolytic cleavage of the precursor. These results also reveal new targets for therapeutic application of GDF15 in treating obesity and cachexia.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/metabolismo , Proproteína Convertasas/metabolismo , Animales , Línea Celular , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteolisis , Serina Endopeptidasas/metabolismo , Transducción de Señal/fisiología , Subtilisinas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(21): E4910-E4919, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735694

RESUMEN

Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1ß) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1ß. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1ß loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1ß-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.


Asunto(s)
Quistes/prevención & control , Metabolismo Energético , Epigenómica , Regulación de la Expresión Génica , Factor Nuclear 1-beta del Hepatocito/genética , Receptores de Estrógenos/genética , Insuficiencia Renal Crónica/prevención & control , Animales , Quistes/metabolismo , Quistes/patología , Factor Nuclear 1-beta del Hepatocito/metabolismo , Factor Nuclear 1-beta del Hepatocito/fisiología , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Regiones Promotoras Genéticas , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/fisiología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología
5.
BMC Microbiol ; 18(1): 36, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669516

RESUMEN

BACKGROUND: An issue associated with efficient bioethanol production is the fact that the desired product is toxic to the biocatalyst. Among other effects, ethanol has previously been found to influence the membrane of E. coli in a dose-dependent manner and induce changes in the lipid composition of the plasma membrane. We describe here the characterization of a collection of ethanol-tolerant strains derived from the ethanologenic Escherichia coli strain FBR5. RESULTS: Membrane permeability assays indicate that many of the strains in the collection have alterations in membrane permeability and/or responsiveness of the membrane to environmental changes such as temperature shifts or ethanol exposure. However, analysis of the strains by gas chromatography and mass spectrometry revealed no qualitative changes in the acyl chain composition of membrane lipids in response to ethanol or temperature. To determine whether these strains contain any mutations that might contribute to ethanol tolerance or changes in membrane permeability, we sequenced the entire genome of each strain. Unexpectedly, none of the strains displayed mutations in genes known to control membrane lipid synthesis, and a few strains carried no mutations at all. Interestingly, we found that four independently-isolated strains acquired an identical C → A (V244 V) silent mutation in the ferric citrate transporter gene fecA. Further, we demonstrated that either a deletion of fecA or over-expression of fecA can confer increased ethanol survival, suggesting that any misregulation of fecA expression affects the cellular response to ethanol. CONCLUSIONS: The fact that no mutations were observed in several ethanol-tolerant strains suggested that epigenetic mechanisms play a role in E. coli ethanol tolerance and membrane permeability. Our data also represent the first direct phenotypic evidence that the fecA gene plays a role in ethanol tolerance. We propose that the recurring silent mutation may exert an effect on phenotype by altering RNA-mediated regulation of fecA expression.


Asunto(s)
Tolerancia a Medicamentos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/toxicidad , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Sitios Genéticos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Mutación Silenciosa , Temperatura , Secuenciación Completa del Genoma
6.
EMBO Mol Med ; 9(8): 1150-1164, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28572090

RESUMEN

The endocrine system is crucial for maintaining whole-body homeostasis. Little is known regarding endocrine hormones secreted by the heart other than atrial/brain natriuretic peptides discovered over 30 years ago. Here, we identify growth differentiation factor 15 (GDF15) as a heart-derived hormone that regulates body growth. We show that pediatric heart disease induces GDF15 synthesis and secretion by cardiomyocytes. Circulating GDF15 in turn acts on the liver to inhibit growth hormone (GH) signaling and body growth. We demonstrate that blocking cardiomyocyte production of GDF15 normalizes circulating GDF15 level and restores liver GH signaling, establishing GDF15 as a bona fide heart-derived hormone that regulates pediatric body growth. Importantly, plasma GDF15 is further increased in children with concomitant heart disease and failure to thrive (FTT). Together these studies reveal a new endocrine mechanism by which the heart coordinates cardiac function and body growth. Our results also provide a potential mechanism for the well-established clinical observation that children with heart diseases often develop FTT.


Asunto(s)
Desarrollo Infantil , Factor 15 de Diferenciación de Crecimiento/metabolismo , Hormona del Crecimiento/antagonistas & inhibidores , Miocitos Cardíacos/metabolismo , Animales , Preescolar , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...