Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 44(17): e2300168, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37220400

RESUMEN

This study presents a systematic comparison of the antifouling properties of water-soluble poly(2-oxazoline) (PAOx) and poly(2-oxazine) (PAOzi) brushes grafted to gold surfaces. PAOx and PAOzi are emerging polymer classes in biomedical sciences and are being considered superior alternatives to widely used polyethylene glycol (PEG). Four different polymers, poly(2-methyl-2-oxazoline) (PMeOx), poly(2-ethyl-2-oxazoline) (PEtOx), poly(2-methyl-2-oxazine) (PMeOzi), and poly(2-ethyl-2-oxazine) (PEtOzi), each of them in three different chain lengths, are synthesized and characterized for their antifouling properties. Results show that all polymer-modified surfaces display better antifouling properties than bare gold surfaces as well as analogous PEG coatings. The antifouling properties increase in the following order: PEtOx < PMeOx ≈ PMeOzi < PEtOzi. The study suggests that the resistance to protein fouling derives from both surface hydrophilicity and the molecular structural flexibility of the polymer brushes. PEtOzi brushes with moderate hydrophilicity show the best antifouling performance, possibly due to their highest chain flexibility. Overall, the research contributes to the understanding of antifouling properties in PAOx and PAOzi polymers, with potential applications in various biomaterials.


Asunto(s)
Incrustaciones Biológicas , Polímeros , Polímeros/química , Incrustaciones Biológicas/prevención & control , Polietilenglicoles/química , Oxazinas/química
2.
Polymers (Basel) ; 13(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34641229

RESUMEN

Poly(ethyl ethylene phosphonate)-based methacrylic copolymers containing polysiloxane methacrylate (SiMA) co-units are proposed as surface-active additives as alternative solutions to the more investigated polyzwitterionic and polyethylene glycol counterparts for the fabrication of novel PDMS-based coatings for marine antifouling applications. In particular, the same hydrophobic SiMA macromonomer was copolymerized with a methacrylate carrying a poly(ethyl ethylene phosphonate) (PEtEPMA), a phosphorylcholine (MPC), and a poly(ethylene glycol) (PEGMA) side chain to obtain non-water soluble copolymers with similar mole content of the different hydrophilic units. The hydrolysis of poly(ethyl ethylene phosphonate)-based polymers was also studied in conditions similar to those of the marine environment to investigate their potential as erodible films. Copolymers of the three classes were blended into a condensation cure PDMS matrix in two different loadings (10 and 20 wt%) to prepare the top-coat of three-layer films to be subjected to wettability analysis and bioassays with marine model organisms. Water contact angle measurements showed that all of the films underwent surface reconstruction upon prolonged immersion in water, becoming much more hydrophilic. Interestingly, the extent of surface modification appeared to be affected by the type of hydrophilic units, showing a tendency to increase according to the order PEGMA < MPC < PEtEPMA. Biological tests showed that Ficopomatus enigmaticus release was maximized on the most hydrophilic film containing 10 wt% of the PEtEP-based copolymer. Moreover, coatings with a 10 wt% loading of the copolymer performed better than those containing 20 wt% for the removal of both Ficopomatus and Navicula, independent from the copolymer nature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...