Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 10: 994724, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226118

RESUMEN

Synthesis of metalloid nanoparticles using biological-based fabrication has become an efficient alternative surpassing the existing physical and chemical approaches because there is a need for developing safer, more reliable, cleaner, and more eco-friendly methods for their preparation. Over the last few years, the biosynthesis of metalloid nanoparticles using biological materials has received increased attention due to its pharmaceutical, biomedical, and environmental applications. Biosynthesis using bacterial, fungal, and plant agents has appeared as a faster developing domain in bio-based nanotechnology globally along with other biological entities, thus posing as an option for conventional physical as well as chemical methods. These agents can efficiently produce environment-friendly nanoparticles with the desired composition, morphology (shape as well as size), and stability, along with homogeneity. Besides this, metalloid nanoparticles possess various applications like antibacterial by damaging bacterial cell membranes, anticancer due to damaging tumour sites, targeted drug delivery, drug testing, and diagnostic roles. This review summarizes the various studies associated with the biosynthesis of metalloid particles, namely, tellurium, arsenic, silicon, boron, and antimony, along with their therapeutic, pharmaceutical and environmental applications.

2.
Curr Pharm Biotechnol ; 23(1): 123-139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33573549

RESUMEN

Diseases with a significant loss of neurons, structurally and functionally are termed as neurodegenerative diseases. Due to the present therapeutic interventions and progressive nature of diseases, a variety of side effects have risen up, thus leading the patients to go for an alternative medication. The role of medicinal plants in such cases has been beneficial because of their exhibition via different cellular and molecular mechanisms. Alleviation in inflammatory responses, suppression of the functionary aspect of pro-inflammatory cytokines like a tumor, improvement in antioxidative properties is among few neuroprotective mechanisms of traditional plants. Variation in transcription and transduction pathways plays a vital role in the preventive measures of plants in such diseases. Neurodegenerative diseases are generally caused by the depletion of proteins, oxidative and inflammatory stress, environmental changes and so on, with aging being the most important cause. Natural compounds can be used in order to treat neurodegenerative diseases Medicinal plants such as Ginseng, Withania somnifera, Bacopa monnieri, Ginkgo biloba, etc. are some of the medicinal plants for the prevention of neurological symptoms. This review deals with the use of different medicinal plants for the prevention of neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Panax , Plantas Medicinales , Withania , Antioxidantes , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
3.
Anticancer Agents Med Chem ; 22(13): 2367-2384, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34939551

RESUMEN

Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spread are restricted. Sensitivity towards chemotherapeutic agents has been developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description, and recent clinical studies conducted on them.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Plantas Medicinales , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Fitoquímicos/farmacología , Fitoterapia , Extractos Vegetales/farmacología , Plantas Medicinales/química
4.
Life Sci ; 284: 119908, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453943

RESUMEN

Genetic disorders and congenital abnormalities are present in 2-5% of births all over the world and can cause up to 50% of all early childhood deaths. The establishment of sophisticated and controlled techniques for customizing DNA manipulation is significant for the therapeutic role in such disorders and further research on them. One such technique is CRISPR that is significant towards optimizing genome editing and therapies, metabolic fluxes as well as artificial genetic systems. CRISPR-Cas9 is a molecular appliance that is applied in the areas of genetic and protein engineering. The CRISPR-CAS system is an integral element of prokaryotic adaptive immunity that allows prokaryotic cells to identify and kill any foreign DNA. The Gene editing property of CRISPR finds various applications like diagnostics and therapeutics in cancer, neurodegenerative disorders, genetic diseases, blindness, etc. This review discusses applications of CRISPR as a therapeutic in various disorders including several genetic diseases (including sickle cell anemia, blindness, thalassemia, cystic fibrosis, hereditary tyrosinemia type I, duchenne muscular dystrophy, mitochondrial disorders), Cancer, Huntington's disease and viral infections (like HIV, COVID, etc.) along with the prospects concerning them. CRISPR-based therapy is also being researched and defined for COVID-19. The related mechanism of CRISPR has been discussed alongside highlighting challenges involved in therapeutic applications of CRISPR.


Asunto(s)
Sistemas CRISPR-Cas/genética , Animales , COVID-19/terapia , COVID-19/virología , Ensayos Clínicos como Asunto , Enfermedad/genética , Edición Génica , Humanos , SARS-CoV-2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...