Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 27(10): 3229-3237, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32902003

RESUMEN

X-ray radiation is commonly employed in clinical practice for diagnostic and therapeutic applications. Over the past decade, developments in nanotechnology have led to the use of high-Z elements as the basis for innovative new treatment platforms that enhance the clinical efficacy of X-ray radiation. Nanoscale metal-frameworks (nMOFs) are coordination networks containing organic ligands that have attracted attention as therapeutic platforms in oncology and other areas of medicine. In cancer therapy, X-ray activated, high-Z nMOFs have demonstrated potential as radiosensitizers that increase local radiation dose deposition and generation of reactive oxygen species (ROS). This minireview summarizes current research on high-Z nMOFs in cancer theranostics and discusses factors that may influence future clinical application.


Asunto(s)
Neoplasias , Humanos , Estructuras Metalorgánicas , Nanoestructuras , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisión , Rayos X
2.
Carbohydr Res ; 493: 108046, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32497941

RESUMEN

The beneficial effects provided by chitosan oligosaccharides (COS) make them of interest in medical research. The monomers that constitute COS confer distinct properties, so controlling COS composition during their production is significant. In this work, we degraded chitin and chitosan polymers and identified low molecular weight products such as COS that formed, using electrospray ionization time-of-flight mass spectrometry. Our results show that hydrochloric acid, hydrogen peroxide, and nitrous acid generate distinct products from chitin and chitosan. Hydrochloric acid degrades chitin and chitosan to produce glucosamine (GlcN) monomers and oligomers. Hydrogen peroxide degrades chitosan to produce GlcN and N-acetyl-d-glucosamine (GlcNAc) monomers and oligomers, and nitrous acid degrades chitosan to produce 2,5-anhydro- d-mannose. Our studies show that COS composition is dictated by both the degradation protocol and the starting polymer. Additionally, our results enable selection of degradation protocols based on their ability to degrade chitin and chitosan and facilitate the production of COS with desired compositions.


Asunto(s)
Quitina/química , Quitosano/química , Conformación de Carbohidratos , Peso Molecular , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
3.
Data Brief ; 29: 105129, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31993473

RESUMEN

The ATR FT-IR spectra of Pinus ponderosa sporopollenin isolated from pollen spores by enzymatic digestion. Sporopollenin is also isolated by solvent extraction, followed by either acidolysis with phosphoric acid, and acetolysis is reported [1]. The FT-IR spectra are supplemented by XPS data of the isolated sporopollenin samples. The enzymatically isolated sporopollenin is subjected to a variety of chemical treatments and modifications, including alkaline hydrolysis, deuteration (by both D20 and methanol-d4), sodium cyanoborohydride reduction, hydrolysis by peracetic acid, bromination, acetylization with acetone and octanal, and acid-catalyzed ketal cleavage. The sporopollenin isolated by acidolysis and acetolysis are also subjected to alkaline hydrolysis. The sporopollenin samples are compared to a variety of model compounds representative of putative structural constituents and functional groups.

4.
Phytochemistry ; 170: 112195, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31743799

RESUMEN

In plant spores and pollen, sporopollenin occurs as a structural polymer with remarkable resistance to chemical degradation. This recalcitrant polymer is well-suited to analysis by non-destructive infrared spectroscopy. However, existing infrared characterization of sporopollenin has been limited in scope and occasionally contradictory. This study provides a comprehensive structural analysis of sporopollenin in the Pinus ponderosa pollen exine using infrared spectroscopy, including detailed band assignments, descriptions of chemical reactivity, and comparison to multiple reference substances. We observe that the infrared spectral characteristics of sporopollenin prepared by enzymatic digestion of the polysaccharide-based intine are largely consistent with a copolymer of aliphatic lipids and trans-4-hydroxycinnamic acid, without distinct contributions from α-pyrone or carotenoid substructures.


Asunto(s)
Biopolímeros/análisis , Carotenoides/análisis , Fitoquímicos/análisis , Pinus ponderosa/química , Estructura Molecular , Espectrofotometría Infrarroja
5.
Nitric Oxide ; 92: 18-25, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31398487

RESUMEN

S-Nitrosothiols (RSNOs) such as S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP) are susceptible to decomposition by stimuli including heat, light, and trace metal ions. Using stepwise isothermal thermogravimetric analysis (TGA), we observed that NO-forming homolytic cleavage of the S-N bond occurs at 134.7 ±â€¯0.8 °C in GSNO and 132.8 ±â€¯0.9 °C in SNAP, contrasting with the value of 150 °C that has been previously reported for both RSNOs. Using mass spectrometry (MS), nuclear magnetic resonance (NMR), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), we analyzed the decomposition products from TGA experiments. The organic product of GSNO decomposition was glutathione disulfide, while SNAP decomposed to form N-acetylpenicillamine disulfide as well as other products, including tri- and tetrasulfides. In addition, we assessed the relative solution stabilities of GSNO and SNAP under common laboratory conditions, which include variable temperature, pH, and light exposure with rigorous exclusion of trace metal ions by chelation. GSNO exhibited greater stability than SNAP over a 7-day period except in one instance. Both RSNOs demonstrated an inverse relationship between solution stability and temperature, with refrigeration considerably extending shelf life. A decrease in pH from 7.4 to 5.0 also enhanced the stability of both RSNOs. A further decrease in pH from 5.0 to 3.0 resulted in decreased stability for both RSNOs, and is notably the only occasion in which SNAP proved more stable than GSNO. After 1 h of exposure to overhead fluorescent lighting, both RSNOs displayed high susceptibility to light-induced decomposition. After 7 h, GSNO and SNAP decomposed 19.3 ±â€¯0.5% and 30 ±â€¯2%, respectively.


Asunto(s)
S-Nitroso-N-Acetilpenicilamina/química , S-Nitrosoglutatión/química , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Termogravimetría
6.
Nitric Oxide ; 84: 16-21, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30630054

RESUMEN

S-Nitrosothiols (RSNOs) such as S-nitrosoglutathione (GSNO) are known to produce nitric oxide (NO) through thermal, photolytic, and metal ion-promoted pathways, which has led to their increasing use as exogenous sources of therapeutic NO. Despite the burgeoning NO release applications for RSNOs, their susceptibility to metal-promoted decomposition has rarely been examined in a uniform manner through the specific measurement of NO release. In this study, the ability of various transition and post-transition metal ions to promote NO release from GSNO was surveyed by chemiluminescence-based NO detection. Substantial NO formation (>10-fold increase relative to GSNO baseline) was detected after the addition of Cu2+, Au3+, Pd2+, Pt2+, and V3+. Modest increases were observed in the cases of Co2+, Hf4+, Fe2+, Fe3+, Mn2+, Hg2+, Ni2+, Ag+, Sn2+, and Zr4+, while no effect was evident for Al3+, Cr3+, Pb2+, Sc3+, and Zn2+. It was further observed that In+ compounds initiate the apparent NO-forming decomposition of GSNO, while In0 and In3+ are inactive, indicating that In+ exerts a previously unknown effect on GSNO.


Asunto(s)
Indio/química , Donantes de Óxido Nítrico/química , Óxido Nítrico/síntesis química , S-Nitrosoglutatión/química
7.
Carbohydr Polym ; 203: 285-291, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318215

RESUMEN

Chitosan has received substantial attention as a biomaterial due to its unique properties. It has become increasingly common to derivatize chitosan to produce nitric oxide (NO)-releasing materials that exert various therapeutic effects through the action of NO. It is generally the case that these NO-releasing polymers are prepared by exposure to high-pressure NO or nitrosating agents like nitrous acid (HNO2) or alkyl nitrites (RONO). In our study, mass spectrometry and spectroscopic methods demonstrate that both monomeric and oligomeric glucosamine experience chemical alteration after exposure to HNO2-based nitrosating conditions from the literature. In polymeric chitosan, HNO2-based nitrosating conditions were found to induce degradation through the formation of 2,5-anhydro-d-mannose and oligosaccharides. In contrast, the RONO tert-butyl nitrite and high-pressure NO were not found to significantly degrade or otherwise alter the structure of glucosamine or its oligomers, supporting the suitability of these approaches.

8.
Anal Chem ; 90(11): 6867-6876, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29746096

RESUMEN

In vitro assays (such as resazurin and MTT) provide an opportunity to determine the cytotoxicity of novel therapeutics before moving forward with expensive and resource-intensive in vivo studies. A concern with using these assays, however, is the production of false responses in the presence of particular chemical functionalities. To better understand this phenomenon, 19 small molecules at 6 concentrations (1 µM-100 mM) were tested in the presence of resazurin and MTT reagents to highlight potential interfering species. Through the use of absorbance measurements (using well-plate assays and UV-vis spectroscopy) with parallel MS analysis, we have shown that significant conversion of the assay reagents readily occurs in the presence of many tested interfering species without the need for any cellular activity. The most attributable sources of interference seem to arise from the presence of thiol and carboxylic acid moieties. Interestingly, the detectable interferences were more prevalent and larger in the presence of MTT (19 species with some deviations >3000%) compared to resazurin (16 species with largest deviation of ∼150%). Additionally, those deviations in the presence of resazurin were only substantial at high concentrations, while MTT showed deviations across the tested concentrations. This comprehensive study gives insight into chemical functional groups (thiols, amines, amides, carboxylic acids) that may interfere with resazurin and MTT assays in the absence of metabolic activity and indicates that proper control studies must be performed to obtain accurate data from these in vitro assays.


Asunto(s)
Oxazinas/análisis , Bibliotecas de Moléculas Pequeñas/análisis , Xantenos/análisis , Estructura Molecular , Oxazinas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Xantenos/metabolismo
9.
ACS Appl Mater Interfaces ; 9(41): 35628-35641, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28976734

RESUMEN

Cu-BTTri (H3BTTri = 1,3,5-tris[1H-1,2,3-triazol-5-yl]benzene) is a water-stable, copper-based metal-organic framework (MOF) that exhibits the ability to generate therapeutic nitric oxide (NO) from S-nitrosothiols (RSNOs) available within the bloodstream. Immobilization of Cu-BTTri within a polymeric membrane may allow for localized NO generation at the blood-material interface. This work demonstrates that Cu-BTTri can be incorporated within hydrophilic membranes prepared from poly(vinyl alcohol) (PVA), a polymer that has been examined for numerous biomedical applications. Following immobilization, the ability of the MOF to produce NO from the endogenous RSNO S-nitrosoglutathione (GSNO) is not significantly inhibited. Poly(vinyl alcohol) membranes containing dispersions of Cu-BTTri were tested for their ability to promote NO release from a 10 µM initial GSNO concentration at pH 7.4 and 37 °C, and NO production was observed at levels associated with antithrombotic therapeutic effects without significant copper leaching (<1%). Over 3.5 ± 0.4 h, 10 wt % Cu-BTTri/PVA membranes converted 97 ± 6% of GSNO into NO, with a maximum NO flux of 0.20 ± 0.02 nmol·cm-2·min-1. Furthermore, it was observed for the first time that Cu-BTTri is capable of inducing NO production from GSNO under aerobic conditions. At pH 6.0, the NO-forming reaction of 10 wt % Cu-BTTri/PVA membrane was accelerated by 22%, while an opposite effect was observed in the case of aqueous copper(II) chloride. Reduced temperature (20 °C) and the presence of the thiol-blocking reagent N-ethylmaleimide (NEM) impair the NO-forming reaction of Cu-BTTri/PVA with GSNO, with both conditions resulting in a decreased NO yield of 16 ± 1% over 3.5 h. Collectively, these findings suggest that Cu-BTTri/PVA membranes may have therapeutic utility through their ability to generate NO from endogenous substrates. Moreover, this work provides a more comprehensive analysis of the parameters that influence Cu-BTTri efficacy, permitting optimization for potential medical applications.


Asunto(s)
Alcohol Polivinílico/química , Estructuras Metalorgánicas , Óxido Nítrico , Donantes de Óxido Nítrico , Cloruro de Polivinilo
10.
ACS Appl Mater Interfaces ; 9(6): 5139-5148, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28164705

RESUMEN

It has been previously demonstrated that copper-based metal-organic frameworks (MOFs) accelerate formation of the therapeutically active molecule nitric oxide (NO) from S-nitrosothiols (RSNOs). Because RSNOs are naturally present in blood, this function is hypothesized to permit the controlled production of NO through use of MOF-based blood-contacting materials. The practical implementation of MOFs in this application typically requires incorporation within a polymer support, yet this immobilization has been shown to impair the ability of the MOF to interact with the NO-forming RSNO substrate. Here, the water-stable, copper-based MOF H3[(Cu4Cl)3-(BTTri)8] (H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), or Cu-BTTri, was incorporated within the naturally derived polysaccharide chitosan to form membranes that were evaluated for their ability to enhance NO generation from the RSNO S-nitrosoglutathione (GSNO). This is the first report to evaluate MOF-induced NO release from GSNO, the most abundant small-molecule RSNO. At a 20 µM initial GSNO concentration (pH 7.4 phosphate buffered saline, 37 °C), chitosan/Cu-BTTri membranes induced the release of 97 ± 3% of theoretical NO within approximately 4 h, corresponding to a 65-fold increase over the baseline thermal decomposition of GSNO. Furthermore, incorporation of Cu-BTTri within hydrophilic chitosan did not impair the activity of the MOF, unlike earlier efforts using hydrophobic polyurethane or poly(vinyl chloride). The reuse of the membranes continued to enhance NO production from GSNO in subsequent experiments, suggesting the potential for continued use. Additionally, the major organic product of Cu-BTTri-promoted GSNO decomposition was identified as oxidized glutathione via mass spectrometry, confirming prior hypotheses. Structural analysis by pXRD and assessment of copper leaching by ICP-AES indicated that Cu-BTTri retains crystallinity and exhibits no significant degradation following exposure to GSNO. Taken together, these findings provide insight into the function and utility of polymer/Cu-BTTri systems and may support the development of future MOF-based biomaterials.


Asunto(s)
Óxido Nítrico/química , Quitosano , Cobre , Glutatión , Estructuras Metalorgánicas , S-Nitrosoglutatión
11.
ACS Appl Mater Interfaces ; 9(3): 2104-2113, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28068065

RESUMEN

Nitric oxide (NO) occurs naturally in mammalian biochemistry as a critical signaling molecule and exhibits antithrombotic, antibacterial, and wound-healing properties. NO-forming biodegradable polymers have been utilized in the development of antithrombotic or antibacterial materials for biointerfacial applications, including tissue engineering and the fabrication of erodible coatings for medical devices such as stents. Use of such NO-forming polymers has frequently been constrained by short-term release or limited NO storage capacity and has led to the pursuit of new materials with improved NO release function. Herein, we report the development of an NO-releasing bioerodible coating prepared from poly[bis(3-mercapto-3-methylbut-1-yl glycinyl)phosphazene] (POP-Gly-MMB), a polyphosphazene based on glycine and the naturally occurring tertiary thiol 3-mercapto-3-methylbutan-1-ol (MMB). To evaluate the NO release properties of this material, the thiolated polymer POP-Gly-MMB-SH was applied as a coating to glass substrates and subsequently converted to the NO-forming S-nitrosothiol (RSNO) derivative (POP-Gly-MMB-NO) by immersion in a mixture of tert-butyl nitrite (t-BuONO) and pentane. NO release flux from the coated substrates was determined by chemiluminescence-based NO measurement and was found to remain in a physiologically relevant range for up to 2 weeks (6.5-0.090 nmol of NO·min-1·cm-2) when immersed in pH 7.4 phosphate-buffered saline (PBS) at 37 °C. Furthermore, the coating exhibited an overall NO storage capacity of 0.89 ± 0.09 mmol·g-1 (4.3 ± 0.6 µmol·cm-2). Erosion of POP-Gly-MMB-NO in PBS at 37 °C over 6 weeks results in 14% mass loss, and time-of-flight mass spectrometry (TOF-MS) was used to characterize the organic products of hydrolytic degradation as glycine, MMB, and several related esters. The comparatively long-term NO release and high storage capacity of POP-Gly-MMB-NO coatings suggest potential as a source of therapeutic NO for biomedical applications.


Asunto(s)
Óxido Nítrico/química , Compuestos Organofosforados , Polímeros , S-Nitrosotioles
12.
ACS Appl Mater Interfaces ; 8(30): 19343-52, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27447022

RESUMEN

Metal-organic frameworks (MOFs) have demonstrated promise in biomedical applications as vehicles for drug delivery, as well as for the ability of copper-based MOFs to generate nitric oxide (NO) from endogenous S-nitrosothiols (RSNOs). Because NO is a participant in biological processes where it exhibits anti-inflammatory, antibacterial, and antiplatelet activation properties, it has received significant attention for therapeutic purposes. Previous work has shown that the water-stable MOF H3[(Cu4Cl)3-(BTTri)8] (H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), or CuBTTri, produces NO from RSNOs and can be included within a polymeric matrix to form NO-generating materials. While such materials demonstrate potential, the possibility of MOF degradation leading to copper-related toxicity is a concern that must be addressed prior to adapting these materials for biomedical applications. Herein, we present the first cytotoxicity evaluation of an NO-generating CuBTTri/polymer composite material using 3T3-J2 murine embryonic fibroblasts and primary human hepatocytes (PHHs). CuBTTri/polymer films were prepared from plasticized poly(vinyl chloride) (PVC) and characterized via PXRD, ATR-FTIR, and SEM-EDX. Additionally, the ability of the CuBTTri/polymer films to enhance NO generation from S-nitroso-N-acetylpenicillamine (SNAP) was evaluated. Enhanced NO generation in the presence of the CuBTTri/polymer films was observed, with an average NO flux (0.90 ± 0.13 nmol cm(-2) min(-1)) within the range associated with antithrombogenic surfaces. The CuBTTri/polymer films were analyzed for stability in phosphate buffered saline (PBS) and cell culture media under physiological conditions for a 4 week duration. Cumulative copper release in both cell media (0.84 ± 0.21%) and PBS (0.18 ± 0.01%) accounted for less than 1% of theoretical copper present in the films. In vitro cell studies performed with 3T3-J2 fibroblasts and PHHs did not indicate significant toxicity, providing further support for the potential implementation of CuBTTri-based materials in biomedical applications.


Asunto(s)
Estructuras Metalorgánicas/química , Polímeros/química , Agua/química , Células 3T3 , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Hepatocitos/efectos de los fármacos , Humanos , Estructuras Metalorgánicas/farmacología , Ratones , S-Nitroso-N-Acetilpenicilamina/química
13.
J Mater Chem B ; 4(11): 1987-1998, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32263076

RESUMEN

Nitric oxide (NO) is a unique bioactive molecule that performs multiple physiological functions and has been found to exhibit antithrombotic, antimicrobial, and wound-healing effects as an exogenous therapeutic agent. NO release from polymeric materials intended for use in biomedical applications has been established to reduce their thrombogenicity and decrease the likelihood of infection and inflammation that frequently produce medical complications. As a result, numerous NO-releasing polymers have been developed in an effort to utilize the beneficial properties of NO to improve the performance of implantable materials. The majority of synthetic NO-releasing biodegradable polymers that have been reported to date are polyesters, and there is significant interest in the development of new NO-releasing materials with improved or distinctive physicochemical characteristics. Polyphosphazenes are polymers with inorganic phosphorus-nitrogen backbones, and hydrolytically-sensitive derivatives with organic substituents have been prepared that degrade under physiological conditions. For this reason, biodegradable poly(organophosphazenes) are interesting candidate materials for applications such as tissue engineering, where the addition of NO release capability may be therapeutically useful. Herein, we report the first development and characterization of an NO-releasing poly(organophosphazene) from poly(ethyl S-methylthiocysteinyl-co-ethyl cysteinyl phosphazene) (POP-EtCys-SH). The thiolated polymer was synthesized from the reaction of poly(dichlorophosphazene) with ethyl S-methylthiocysteinate, followed by partial cleavage of the disulfide linkages to form free thiol groups. The conversion of thiol to the NO-releasing S-nitrosothiol functional group with tert-butyl nitrite resulted in a polymer (POP-EtCys-NO) with an average NO content of 0.55 ± 0.04 mmol g-1 that was found to release a total of 0.35 ± 0.02 mmol NO g-1 over 24 h under physiological conditions (37 °C, pH 7.4 phosphate buffered saline). Extracts obtained from both the thiolated and S-nitrosated polymers were not found to significantly impair the viability of human dermal fibroblasts or induce morphological changes, indicating that this cysteine-based polyphosphazene may possess potential utility as an NO-releasing biomaterial.

14.
J Mater Chem B ; 2(42): 7449-7458, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-32261970

RESUMEN

Nitric oxide (NO)-releasing derivatives of chitin and chitosan were prepared through incorporation of the symmetrical dithiols 1,2-ethanedithiol, 1,3-propanedithiol, and 1,6-hexanedithiol, followed by S-nitrosation with tert-butyl nitrite. The NO loading of the materials and their real-time NO release profiles under physiological conditions (pH 7.4 phosphate buffered saline, 37 °C) were recorded over 24 hours, and in vitro cytotoxicity studies were performed using human dermal fibroblasts (HDF) to assess the suitability of the materials for biomedical applications. Of the six thiolated parent materials, five exhibited cell viability higher than 70% (MTS assay), an outcome that was corroborated by LIVE/DEAD assay. In all cases, HDF morphology was unaffected by the presence of extracts obtained from the thiolated materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA