Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 62(30): 7917-7930, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38038084

RESUMEN

The Aeolus mission by the European Space Agency was launched in August 2018 and stopped operations in April 2023. Aeolus carried the direct-detection Atmospheric LAser Doppler INstrument (ALADIN). To support the preparation of Aeolus, the ALADIN Airborne Demonstrator (A2D) instrument was developed and applied in several field campaigns. Both ALADIN and A2D consist of so-called Rayleigh and Mie channels used to measure wind from both molecular and particulate backscatter signals. The Mie channel is based on the fringe-imaging technique, which relies on determining the spatial location of a linear interference pattern (fringe) that originated from multiple interference in a Fizeau spectrometer. The accuracy of the retrieved winds is among others depending on the analytic algorithm used for determining the fringe location on the detector. In this paper, the performance of two algorithms using Lorentzian and Voigt fit functions is investigated by applying them to A2D data that were acquired during the AVATAR-I airborne campaign. For performance validation, the data of a highly accurate heterodyne detection wind lidar (2-µm DWL) that was flown in parallel are used as a reference. In addition, a fast and non-fit-based algorithm based on a four-pixel intensity ratio approach (R 4) is developed. It is revealed that the Voigt-fit-based algorithm provides 50% more data points than the Lorentzian-based algorithm while applying a quality control that yields a similar random error of about 1.5 m/s. The R 4 algorithm is shown to deliver a similar accuracy as the Voigt-fit-based algorithms, with the advantage of a one to two orders of magnitude faster computation time. Principally, the R 4 algorithm can be adapted to other spectroscopic applications where sub-pixel knowledge of the location of measured peak profiles is needed.

2.
Opt Lett ; 46(17): 4132-4135, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469957

RESUMEN

The airborne measurement of a temperature profile from 10.5 km down towards ground (≈1.4km above sea level) during daytime by means of a lidar utilizing Rayleigh-Brillouin (RB) scattering is demonstrated for the first time, to our knowledge. The spectra of the scattered light were measured by tuning the laser (λ=354.9nm) over a 11 GHz frequency range with a step size of 250 MHz while using a Fabry-Perot interferometer as a spectral filter. The measurement took 14 min and was conducted over a remote area in Iceland with the ALADIN Airborne Demonstrator on-board the DLR Falcon aircraft. The temperature profile was derived by applying an analytical RB line shape model to the backscatter spectra, which were measured at different altitudes with a vertical resolution of 630 m. A comparison with temperature profiles from radiosonde observations and model temperatures shows reasonable agreement with biases of less than ±2K. Based on Poisson statistics, the random error of the derived temperatures is estimated to vary between 0.1 K and 0.4 K. The work provides insight into the possible realization of airborne lidar temperature profilers based on RB scattering.

3.
Opt Lett ; 45(6): 1443-1446, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32163987

RESUMEN

Global acquisition of atmospheric wind profiles using a spaceborne direct-detection Doppler wind lidar is being accomplished following the launch of European Space Agency's Aeolus mission. One key part of the instrument is a single-frequency, ultraviolet laser that emits nanosecond pulses into the atmosphere. High output energy and frequency stability ensure a sufficient signal-to-noise ratio of the backscatter return and an accurate determination of the Doppler frequency shift induced by the wind. This Letter discusses the design of the laser transmitter for the first Doppler wind lidar in space and its performance during the first year of the Aeolus mission, providing valuable insights for upcoming space lidar missions.

4.
Appl Opt ; 56(32): 9057-9068, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29131193

RESUMEN

We report on the design and performance of the laser deployed in the airborne demonstrator Doppler wind lidar for the Aeolus mission of the European Space Agency (ESA). The all-solid-state, diode-pumped and frequency-tripled Nd:YAG laser is realized as a master oscillator power amplifier (MOPA) system, generating 60 mJ of single-frequency pulses at 355 nm wavelength, 50 Hz repetition rate and 20 ns pulse duration. For the measurement of the Doppler frequency shift over several accumulated laser shots, the frequency stability of the laser is of crucial importance. Injection-seeding, in combination with an active cavity control based on the Ramp-Delay-Fire technique, provides a pulse-to-pulse frequency stability of 0.25 MHz measured at 1064 nm under laboratory conditions. This value increases to 0.31 MHz for airborne operation in a vibration environment that has been characterized by multiple acceleration sensors during different flight conditions. In addition, a pure Ramp-Fire setting was tested for comparison leading to a frequency stability of 0.16 MHz both in airborne operation and on ground. The laser cavity control electronics also have to provide a trigger signal for the lidar detection electronics, about 60 µs prior to the expected laser pulse emission and with high timing stability. An in-flight timing stability of below 100 ns was measured decreasing to 20 ns for a shorter pre-trigger time of 10 µs.

5.
Opt Express ; 25(2): 749-757, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28157963

RESUMEN

We report continuous-wave beam conversion from 1.06 to 1.49 µm in a diamond Raman laser operating on the second Stokes shift. High power (114 W) and high conversion efficiency (44%) is achieved using a single cavity that is highly resonant at the first Stokes wavelength but has high output coupling at the second Stokes wavelength (89%). An analytical model was developed for external-cavity Raman lasers operating in steady-state, revealing that optimization of second Stokes output is markedly different to first Stokes and that there is a direct and proportional relationship between the second Stokes output coupling and the pump depletion in the diamond, which we have confirmed by experiment. This technology shows promise for power scaling beyond the capabilities of current fiber lasers operating in the applications-rich 1.5-1.6 µm wavelength range.

6.
Opt Express ; 24(24): 27812-27820, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27906349

RESUMEN

We report a narrowband and tunable diamond Raman laser generating eye-safe radiation suitable for water vapor detection. Frequency conversion of a tunable pump laser operating from 1063 to 1066 nm to the second order Stokes component in an external standing-wave cavity yielded 7 W of multimode output power in the wavelength range from 1483 to 1488 nm at a conversion efficiency of 21%. Stable single longitudinal mode operation was achieved over the whole tuning range at low power (0.1 W), whereas incorporation of a volume Bragg grating as an output coupler enabled much higher stable power to be attained (0.5 W). A frequency stability of 40 MHz was obtained over a minute without active cavity stabilization. It was found that mode stability is aided via seeding of the second Stokes by four-wave mixing, which leads to a doubling of the mode-hopping interval. The laser was employed for the detection of water vapor in ambient air, demonstrating its potential for remote sensing applications.

7.
Opt Express ; 24(19): 21463-73, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661886

RESUMEN

We report a quasi-continuous-wave external cavity Raman laser based on potassium yttrium tungstate (KYW). Laser output efficiency and spectrum are severely affected by the presence of high gain Raman modes of low frequency (< 250 cm-1) that are characteristic of this crystal class. Output spectra contained frequency combs spaced by the low frequency modes but with the overall pump-to-Stokes conversion efficiency at least an order of magnitude lower than that typically obtained in other crystal Raman lasers. We elucidate the primary factors affecting laser performance by measuring the Raman gain coefficients of the low energy modes and numerically modeling the cascading dynamics. For a pump polarization aligned to the Ng crystallo-optic axis, the 87 cm-1 Raman mode has a gain coefficient of 9.2 cm/GW at 1064 nm and a dephasing time T2 = 9.6 ps, which are both notably higher than for the 765 cm-1 mode usually considered to be the prominent Raman mode of KYW. The implications for continuous-wave Raman laser design and the possible advantages for applications are discussed.

8.
Anticancer Res ; 35(5): 2651-5, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25964541

RESUMEN

BACKGROUND/AIM: UBC Rapid is a test detecting fragments of cytokeratins 8 and 18 in urine. These are cytokeratins frequently overexpressed in tumor cells. We present the first results of a multi-centre study using UBC Rapid in patients with bladder cancer and healthy controls. MATERIALS AND METHODS: Clinical urine samples from 92 patients with tumors of the urinary bladder (45 low-grade and 47 high-grade tumors) and from 33 healthy controls were used. Urine samples were analyzed by the UBC Rapid point-of-care (POC) system and evaluated both visually and quantitatively using a concile Omega 100 POC reader. For visual evaluation, different thresholds of band intensity for considering a test as positive were applied. Sensitivities and specificities were calculated by contingency analyses. RESULTS: We found that pathological concentrations by UBC Rapid are detectable in urine of patients with bladder cancer. The calculated diagnostic sensitivity of UBC Rapid in urine was 68.1% for high-grade, but only 46.2% for low-grade tumors. The specificity was 90.9%. The area under the curve (AUC) after receiver-operated curve (ROC) analysis was 0.733. Pathological levels of UBC Rapid in urine are higher in patients with bladder cancer in comparison to the control group (p<0.0001). CONCLUSION: UBC rapid can differentiate between patients with bladder cancer and controls. Further studies with a greater number of patients will show how valuable these results are.


Asunto(s)
Biomarcadores de Tumor/orina , Queratina-18/orina , Queratina-8/orina , Neoplasias de la Vejiga Urinaria/orina , Anciano , Antígenos de Neoplasias , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Neoplasias de la Vejiga Urinaria/patología
9.
Opt Lett ; 36(9): 1644-6, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21540955

RESUMEN

A Raman laser based on a bulk silicon single crystal with 1.127 µm emission wavelength is demonstrated. The Si crystal with 30 mm length was placed into an external cavity and pumped by a Q-switched Nd:YAG master oscillator power amplifier system. Strong defocusing of the pump and Raman laser beam by free carriers was compensated by an intracavity lens. Raman laser operation with a pulse duration of 2.5 ns was identified by a Raman laser threshold significantly lower than the single-pass stimulated Raman-scattering threshold. Linear absorption losses of the 1.06415 µm pump radiation are strongly reduced by cooling the Si crystal to a temperature of 10 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...