Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Digestion ; 105(3): 224-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38479373

RESUMEN

INTRODUCTION: Comprehensive and standardized colonoscopy reports are crucial in colorectal cancer prevention, monitoring, and research. This study investigates adherence to national and international guidelines by analyzing reporting practices among 21 endoscopists in 7 German centers, with a focus on polyp reporting. METHODS: We identified and assessed German, European, American, and World Health Organization-provided statements to identify key elements in colonoscopy reporting. Board-certified gastroenterologists rated the relevance of each element and estimated their reporting frequency. Adherence to the identified report elements was evaluated for 874 polyps from 351 colonoscopy reports ranging from March 2021 to March 2022. RESULTS: We identified numerous recommendations for colonoscopy reporting. We categorized the reasoning behind those recommendations into clinical relevance, justification, and quality control and research. Although all elements were considered relevant by the surveyed gastroenterologists, discrepancies were observed in the evaluated reports. Particularly diminutive polyps or attributes which are rarely abnormal (e.g., surface integrity) respectively rarely performed (e.g., injection) were sparsely documented. Furthermore, the white light morphology of polyps was inconsistently documented using either the Paris classification or free text. In summary, the analysis of 874 reported polyps revealed heterogeneous adherence to the recommendations, with reporting frequencies ranging from 3% to 89%. CONCLUSION: The inhomogeneous report practices may result from implicit reporting practices and recommendations with varying clinical relevance. Future recommendations should clearly differentiate between clinical relevance and research and quality control or explanatory purposes. Additionally, the role of computer-assisted documentation should be further evaluated to increase report frequencies of non-pathological findings and diminutive polyps.


Asunto(s)
Pólipos del Colon , Colonoscopía , Neoplasias Colorrectales , Adhesión a Directriz , Humanos , Colonoscopía/normas , Colonoscopía/estadística & datos numéricos , Colonoscopía/métodos , Adhesión a Directriz/estadística & datos numéricos , Pólipos del Colon/patología , Pólipos del Colon/diagnóstico , Alemania , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología , Guías de Práctica Clínica como Asunto , Pautas de la Práctica en Medicina/estadística & datos numéricos , Pautas de la Práctica en Medicina/normas , Mejoramiento de la Calidad , Gastroenterólogos/estadística & datos numéricos , Gastroenterólogos/normas , Documentación/normas , Documentación/estadística & datos numéricos , Documentación/métodos
2.
Endoscopy ; 55(12): 1118-1123, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37399844

RESUMEN

BACKGROUND : Reliable documentation is essential for maintaining quality standards in endoscopy; however, in clinical practice, report quality varies. We developed an artificial intelligence (AI)-based prototype for the measurement of withdrawal and intervention times, and automatic photodocumentation. METHOD: A multiclass deep learning algorithm distinguishing different endoscopic image content was trained with 10 557 images (1300 examinations, nine centers, four processors). Consecutively, the algorithm was used to calculate withdrawal time (AI prediction) and extract relevant images. Validation was performed on 100 colonoscopy videos (five centers). The reported and AI-predicted withdrawal times were compared with video-based measurement; photodocumentation was compared for documented polypectomies. RESULTS: Video-based measurement in 100 colonoscopies revealed a median absolute difference of 2.0 minutes between the measured and reported withdrawal times, compared with 0.4 minutes for AI predictions. The original photodocumentation represented the cecum in 88 examinations compared with 98/100 examinations for the AI-generated documentation. For 39/104 polypectomies, the examiners' photographs included the instrument, compared with 68 for the AI images. Lastly, we demonstrated real-time capability (10 colonoscopies). CONCLUSION : Our AI system calculates withdrawal time, provides an image report, and is real-time ready. After further validation, the system may improve standardized reporting, while decreasing the workload created by routine documentation.


Asunto(s)
Inteligencia Artificial , Endoscopía Gastrointestinal , Humanos , Colonoscopía , Algoritmos , Documentación
3.
Endoscopy ; 55(9): 871-876, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37080235

RESUMEN

BACKGROUND: Measurement of colorectal polyp size during endoscopy is mainly performed visually. In this work, we propose a novel polyp size measurement system (Poseidon) based on artificial intelligence (AI) using the auxiliary waterjet as a measurement reference. METHODS: Visual estimation, biopsy forceps-based estimation, and Poseidon were compared using a computed tomography colonography-based silicone model with 28 polyps of defined sizes. Four experienced gastroenterologists estimated polyp sizes visually and with biopsy forceps. Furthermore, the gastroenterologists recorded images of each polyp with the waterjet in proximity for the application of Poseidon. Additionally, Poseidon's measurements of 29 colorectal polyps during routine clinical practice were compared with visual estimates. RESULTS: In the silicone model, visual estimation had the largest median percentage error of 25.1 % (95 %CI 19.1 %-30.4 %), followed by biopsy forceps-based estimation: median 20.0 % (95 %CI 14.4 %-25.6 %). Poseidon gave a significantly lower median percentage error of 7.4 % (95 %CI 5.0 %-9.4 %) compared with other methods. During routine colonoscopies, Poseidon presented a significantly lower median percentage error (7.7 %, 95 %CI 6.1 %-9.3 %) than visual estimation (22.1 %, 95 %CI 15.1 %-26.9 %). CONCLUSION: In this work, we present a novel AI-based method for measuring colorectal polyp size with significantly higher accuracy than other common sizing methods.


Asunto(s)
Pólipos del Colon , Colonografía Tomográfica Computarizada , Neoplasias Colorrectales , Humanos , Pólipos del Colon/diagnóstico por imagen , Pólipos del Colon/patología , Inteligencia Artificial , Colonoscopía/métodos , Colonografía Tomográfica Computarizada/métodos , Instrumentos Quirúrgicos , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología
4.
Int J Colorectal Dis ; 37(6): 1349-1354, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35543874

RESUMEN

PURPOSE: Computer-aided polyp detection (CADe) systems for colonoscopy are already presented to increase adenoma detection rate (ADR) in randomized clinical trials. Those commercially available closed systems often do not allow for data collection and algorithm optimization, for example regarding the usage of different endoscopy processors. Here, we present the first clinical experiences of a, for research purposes publicly available, CADe system. METHODS: We developed an end-to-end data acquisition and polyp detection system named EndoMind. Examiners of four centers utilizing four different endoscopy processors used EndoMind during their clinical routine. Detected polyps, ADR, time to first detection of a polyp (TFD), and system usability were evaluated (NCT05006092). RESULTS: During 41 colonoscopies, EndoMind detected 29 of 29 adenomas in 66 of 66 polyps resulting in an ADR of 41.5%. Median TFD was 130 ms (95%-CI, 80-200 ms) while maintaining a median false positive rate of 2.2% (95%-CI, 1.7-2.8%). The four participating centers rated the system using the System Usability Scale with a median of 96.3 (95%-CI, 70-100). CONCLUSION: EndoMind's ability to acquire data, detect polyps in real-time, and high usability score indicate substantial practical value for research and clinical practice. Still, clinical benefit, measured by ADR, has to be determined in a prospective randomized controlled trial.


Asunto(s)
Adenoma , Pólipos del Colon , Neoplasias Colorrectales , Adenoma/diagnóstico , Pólipos del Colon/diagnóstico , Colonoscopía/métodos , Neoplasias Colorrectales/diagnóstico , Computadores , Humanos , Proyectos Piloto , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
United European Gastroenterol J ; 10(5): 477-484, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35511456

RESUMEN

BACKGROUND: The efficiency of artificial intelligence as computer-aided detection (CADe) systems for colorectal polyps has been demonstrated in several randomized trials. However, CADe systems generate many distracting detections, especially during interventions such as polypectomies. Those distracting CADe detections are often induced by the introduction of snares or biopsy forceps as the systems have not been trained for such situations. In addition, there are a significant number of non-false but not relevant detections, since the polyp has already been previously detected. All these detections have the potential to disturb the examiner's work. OBJECTIVES: Development and evaluation of a convolutional neuronal network that recognizes instruments in the endoscopic image, suppresses distracting CADe detections, and reliably detects endoscopic interventions. METHODS: A total of 580 different examination videos from 9 different centers using 4 different processor types were screened for instruments and represented the training dataset (519,856 images in total, 144,217 contained a visible instrument). The test dataset included 10 full-colonoscopy videos that were analyzed for the recognition of visible instruments and detections by a commercially available CADe system (GI Genius, Medtronic). RESULTS: The test dataset contained 153,623 images, 8.84% of those presented visible instruments (12 interventions, 19 instruments used). The convolutional neuronal network reached an overall accuracy in the detection of visible instruments of 98.59%. Sensitivity and specificity were 98.55% and 98.92%, respectively. A mean of 462.8 frames containing distracting CADe detections per colonoscopy were avoided using the convolutional neuronal network. This accounted for 95.6% of all distracting CADe detections. CONCLUSIONS: Detection of endoscopic instruments in colonoscopy using artificial intelligence technology is reliable and achieves high sensitivity and specificity. Accordingly, the new convolutional neuronal network could be used to reduce distracting CADe detections during endoscopic procedures. Thus, our study demonstrates the great potential of artificial intelligence technology beyond mucosal assessment.


Asunto(s)
Pólipos del Colon , Aprendizaje Profundo , Inteligencia Artificial , Pólipos del Colon/diagnóstico , Pólipos del Colon/patología , Pólipos del Colon/cirugía , Colonoscopía/métodos , Humanos , Sensibilidad y Especificidad
6.
Elife ; 92020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32996461

RESUMEN

Adhesion-type GPCRs (aGPCRs) participate in a vast range of physiological processes. Their frequent association with mechanosensitive functions suggests that processing of mechanical stimuli may be a common feature of this receptor family. Previously, we reported that the Drosophila aGPCR CIRL sensitizes sensory responses to gentle touch and sound by amplifying signal transduction in low-threshold mechanoreceptors (Scholz et al., 2017). Here, we show that Cirl is also expressed in high-threshold mechanical nociceptors where it adjusts nocifensive behaviour under physiological and pathological conditions. Optogenetic in vivo experiments indicate that CIRL lowers cAMP levels in both mechanosensory submodalities. However, contrasting its role in touch-sensitive neurons, CIRL dampens the response of nociceptors to mechanical stimulation. Consistent with this finding, rat nociceptors display decreased Cirl1 expression during allodynia. Thus, cAMP-downregulation by CIRL exerts opposing effects on low-threshold mechanosensors and high-threshold nociceptors. This intriguing bipolar action facilitates the separation of mechanosensory signals carrying different physiological information.


Asunto(s)
Proteínas de Drosophila/metabolismo , Mecanorreceptores/fisiología , Mecanotransducción Celular/genética , Nocicepción , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Potenciales de Acción/fisiología , Animales , Drosophila melanogaster , Masculino , Ratas , Ratas Wistar
7.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906086

RESUMEN

The nervous system is shielded by special barriers. Nerve injury results in blood-nerve barrier breakdown with downregulation of certain tight junction proteins accompanying the painful neuropathic phenotype. The dorsal root ganglion (DRG) consists of a neuron-rich region (NRR, somata of somatosensory and nociceptive neurons) and a fibre-rich region (FRR), and their putative epi-/perineurium (EPN). Here, we analysed blood-DRG barrier (BDB) properties in these physiologically distinct regions in Wistar rats after chronic constriction injury (CCI). Cldn5, Cldn12, and Tjp1 (rats) mRNA were downregulated 1 week after traumatic nerve injury. Claudin-1 immunoreactivity (IR) found in the EPN, claudin-19-IR in the FRR, and ZO-1-IR in FRR-EPN were unaltered after CCI. However, laser-assisted, vessel specific qPCR, and IR studies confirmed a significant loss of claudin-5 in the NRR. The NRR was three-times more permeable compared to the FRR for high and low molecular weight markers. NRR permeability was not further increased 1-week after CCI, but significantly more CD68+ macrophages had migrated into the NRR. In summary, NRR and FRR are different in naïve rats. Short-term traumatic nerve injury leaves the already highly permeable BDB in the NRR unaltered for small and large molecules. Claudin-5 is downregulated in the NRR. This could facilitate macrophage invasion, and thereby neuronal sensitisation and hyperalgesia. Targeting the stabilisation of claudin-5 in microvessels and the BDB barrier could be a future approach for neuropathic pain therapy.


Asunto(s)
Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Nociceptores/metabolismo , Dolor/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Proteínas de Uniones Estrechas/biosíntesis , Animales , Ganglios Espinales/patología , Masculino , Nociceptores/patología , Dolor/patología , Enfermedades del Sistema Nervioso Periférico/patología , Ratas , Ratas Wistar
8.
Front Neurosci ; 12: 936, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618565

RESUMEN

Peripheral neuropathy is accompanied by changes in the neuronal environment. The blood-nerve barrier (BNB) is crucial in protecting the neural homeostasis: Tight junctions (TJ) seal paracellular spaces and thus prevent external stimuli from entering. In different models of neuropathic pain, the BNB is impaired, thus contributing to local damage, immune cell invasion and, ultimately, the development of neuropathy with its symptoms. In this study, we examined changes in expression and microstructural localization of two key tight junction proteins (TJP), claudin-1 and the cytoplasmic anchoring ZO-1, in the sciatic nerve of mice subjected to chronic constriction injury (CCI). Via qPCR and analysis of fluorescence immunohistochemistry, a marked downregulation of mRNA as well as decreased fluorescence intensity were observed in the nerve for both proteins. Moreover, a distinct zig-zag structure for both proteins located at cell-cell contacts, indicative of the localization of TJs, was observed in the perineurial compartment of sham-operated animals. This microstructural location in cell-cell-contacts was lost in neuropathy as semiquantified via computational analysis, based on a novel algorithm. In summary, we provide evidence that peripheral neuropathy is not only associated with decrease in relevant TJPs but also exhibits alterations in TJP arrangement and loss in barrier tightness, presumably due to internalization. Specifically, semiquantification of TJP in cell-cell-contacts of microcompartments could be used in the future for routine clinical samples of patients with neuropathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...