Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296478

RESUMEN

In this work a new donor of nitric oxide (NO) with antibacterial properties, namely nitrosyl iron complex of [Fe(C6H5C-SNH2)2(NO)2][Fe(C6H5C-SNH2)(S2O3)(NO)2] composition (complex I), has been synthesized and studied. Complex I was produced by the reduction of the aqueous solution of [Fe2(S2O3)2(NO)2]2- dianion by the thiosulfate, with the further treatment of the mixture by the acidified alcohol solution of thiobenzamide. Based on the structural study of I (X-ray analysis, quantum chemical calculations by NBO and QTAIM methods in the frame of DFT), the data were obtained on the presence of the NO…NO interactions, which stabilize the DNIC dimer in the solid phase. The conformation properties, electronic structure and free energies of complex I hydration were studied using B3LYP functional and the set of 6-31 + G(d,p) basis functions. The effect of an aquatic surrounding was taken into account in the frame of a polarized continuous model (PCM). The NO-donating activity of complex I was studied by the amperometry method using an "amiNO-700" sensor electrode of the "inNO Nitric Oxide Measuring System". The antibacterial activity of I was studied on gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria. Cytotoxicity was studied using Vero cells. Complex I was found to exhibit antibacterial activity comparable to that of antibiotics, and moderate toxicity to Vero cells.


Asunto(s)
Compuestos de Hierro , Óxido Nítrico , Animales , Chlorocebus aethiops , Óxido Nítrico/química , Tiosulfatos , Células Vero , Compuestos de Hierro/farmacología , Hierro/química , Antibacterianos/química , Escherichia coli
2.
J Phys Chem B ; 126(2): 412-422, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34994564

RESUMEN

The alkyltriphenylphosphonium (TPP) group is the most widely used vector targeted to mitochondria. Previously, the length of the alkyl linker was varied as well as structural modifications in the TPP phenyl rings to obtain the optimal therapeutic effect of a pharmacophore conjugated with a lipophilic cation. In the present work, we synthesized butyltriphenylphosphonium cations halogenated and methylated in phenyl rings (C4TPP-X) and measured electrical current through a planar lipid bilayer in the presence of C4TPP-X. The permeability of C4TPP-X varied in the range of 6 orders of magnitude and correlates well with the previously measured translocation rate constant for dodecyltriphenylphosphonium analogues. The partition coefficient of the butyltriphenylphosphonium analogues obtained by calculating the difference in the free energy of cation solvation in water and octane using quantum chemical methods correlates well with the permeability values. Using an ion-selective electrode, a lower degree of accumulation of analogues with halogenated phenyl groups was found on isolated mitochondria of rat liver, which is in agreement with their permeability decrease. Our results indicate the translocation of the butyltriphenylphosphonium cations across the hydrophobic membrane core as rate-limiting stage in the permeability process rather than their binding/release to/from the membrane.


Asunto(s)
Membrana Dobles de Lípidos , Compuestos Onio , Animales , Cationes/química , Membrana Dobles de Lípidos/química , Compuestos Onio/química , Compuestos Organofosforados , Permeabilidad , Ratas
3.
J Org Chem ; 86(4): 3176-3185, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33449678

RESUMEN

Cyclic oxoammonium salts and DMSO are known as important reagents for their diverse and unique reactivity. In the present work, we have studied the reaction of six- and five-membered oxoammonium salts with DMSO. The reaction includes ∼100% selective transfer of the O atom from the >N+═O group to the S atom of DMSO and structural rearrangement of the remaining cationic framework, leading to the formation of hydrolytically unstable iminium salts. The logarithms of the bimolecular rate constants k of the reaction correlated linearly with the reduction potentials E>N+═O/>N-O•, a relationship known for other electrophile-nucleophile combinations. The kinetic data and results of the DFT calculations allow for the suggestion that the studied process proceeds via the prereactive charge-transfer complex >N+═O···S (O)Me2 and its direct concerted rearrangement to the iminium salts. An alternative mechanism that includes intermediate steps with discrete nitrenium cations can be ruled out on the basis of product analysis and DFT computations. The obtained results allow a deeper understanding of the redox chemistry of a pair of nitroxide radicals-oxoammonium cations.

4.
Biochim Biophys Acta Biomembr ; 1863(1): 183483, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002452

RESUMEN

To clarify the contribution of charge delocalization in a lipophilic ion to the efficacy of its permeation through a lipid membrane, we compared the behavior of alkyl derivatives of triphenylphosphonium, tricyclohexylphosphonium and trihexylphosphonium both in natural and artificial membranes. Exploring accumulation of the lipophilic cations in response to inside-negative membrane potential generation in mitochondria by using an ion-selective electrode revealed similar mitochondrial uptake of butyltricyclohexylphosphonium (C4TCHP) and butyltriphenylphosphonium (C4TPP). Fluorescence correlation spectroscopy also demonstrated similar membrane potential-dependent accumulation of fluorescein derivatives of tricyclohexyldecylphosphonium and decyltriphenylphosphonium in mitochondria. The rate constant of lipophilic cation translocation across the bilayer lipid membrane (BLM), measured by the current relaxation method, moderately increased in the following sequence: trihexyltetradecylphosphonium ([P6,6,6,14]) < triphenyltetradecylphosphonium (C14TPP) < tricyclohexyldodecylphosphonium (C12TCHP). In line with these results, measurements of the BLM stationary conductance indicated that membrane permeability for C4TCHP is 2.5 times higher than that for C4TPP. Values of the difference in the free energy of ion solvation in water and octane calculated using the density functional theory and the polarizable continuum solvent model were similar for methyltriphenylphosphonium, tricyclohexylmethylphosphonium and trihexylmethylphosphonium. Our results prove that both cyclic and aromatic moieties are not necessary for lipophilic ions to effectively permeate through lipid membranes.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Compuestos Onio/química , Compuestos Organofosforados/química , Compuestos de Tritilo/química , Permeabilidad
5.
Dalton Trans ; 49(36): 12674-12685, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32959848

RESUMEN

Interaction and transformation of the mononuclear cationic dinitrosyl iron complex [Fe(SC(NH2)2)2(NO)2]+ (complex 1) upon binding with bovine serum albumin (BSA) have been explored using kinetic measurements, UV-Vis and fluorescence spectroscopy, and computational molecular modeling. BSA was found to bind up to five molecules of complex 1 per one protein molecule; as a result, the rate of NO release by complex 1 into solution decreases by a factor of 10. The binding constant of complex 1 with BSA measured by the quenching of intrinsic fluorescence of BSA is 5 × 105 М-1. Molecular docking calculations at pH = 7 have determined five-six low-energy binding sites for complex 1 at subunits I and II of BSA. The most stable protein-ligand complexes are located at the protein pockets near Cys34. The spectroscopic measurements and docking calculations have shown that the decomposition product of complex 1, the Fe(NO)2+ fragment, can form an adduct Fe(Cys34)(His39)(NO)2 (complex 2) with the coordination bonds of Fe with atoms S of Cys34 and ND of His39. The structure of complex 2 was supported by the density functional calculations of the absorption spectrum. Decomposition of complex 2 leads to nitrosylation of BSA at atom S of Cys34. Complexes 1 (bound with BSA), 2 and the nitrosylated BSA can serve as NO depot in plasma.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Hierro/química , Óxidos de Nitrógeno/química , Albúmina Sérica Bovina/metabolismo , Tiourea/química , Animales , Sitios de Unión , Bovinos , Ligandos , Modelos Moleculares , Conformación Molecular
6.
Phys Chem Chem Phys ; 21(42): 23355-23363, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31621727

RESUMEN

Penetrating cations are widely used for the design of bioactive mitochondria-targeted compounds. The introduction of various substituents into the phenyl rings of dodecyltriphenylphosphonium and the measurement of the flip-flop of the synthesized cations by the current relaxation method revealed that methyl groups accelerated significantly the cation penetration through the lipid membrane, depending on the number of groups introduced. However, halogenation slowed down the penetration of the analogues. This result is strictly opposite to the flip-flop acceleration observed for halogenated tetraphenylborate anions. Density functional theory and the polarizable continuum solvent model were used to calculate the solvation energies of methyltriphenylphosphonium and methyltriphenylborate analogues. A good agreement was demonstrated between the difference in the free energy of ion solvation in water and octane and the absolute value of the central free energy barrier estimated from experimental data. Our results reveal that increasing the size of the lipophilic ion can lead to both acceleration and deceleration of the transmembrane flip-flop rate depending on the substituent and sign of the ion. This finding also emphasizes the different nature of ion-water interactions for structurally similar substituted hydrophobic anions and cations.


Asunto(s)
Halógenos/química , Membrana Dobles de Lípidos/química , Teoría Funcional de la Densidad , Electricidad , Interacciones Hidrofóbicas e Hidrofílicas , Iones/química , Compuestos Organofosforados/química , Solventes/química , Tetrafenilborato/química , Agua/química
7.
J Mol Biol ; 387(5): 1137-52, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19249313

RESUMEN

Astroviruses are single-stranded RNA viruses with a replication strategy based on the proteolytic processing of a polyprotein precursor and subsequent release of the viral enzymes of replication. So far, the catalytic properties of the astrovirus protease as well as its structure have remained uncharacterized. In this study, the three-dimensional crystal structure of the predicted protease of human pathogenic astrovirus has been solved to 2.0 A resolution. The protein displays the typical properties of trypsin-like enzymes but also several characteristic features: (i) a catalytic Asp-His-Ser triad in which the aspartate side chain is oriented away from the histidine, being replaced by a water molecule; (ii) a non-common conformation and composition of the S1 pocket; and (iii) the lack of the typical surface beta-ribbons together with a "featureless" shape of the substrate-binding site. Hydrolytic activity assays indicate that the S1 pocket recognises Glu and Asp side chains specifically, which, therefore, are predicted to occupy the P1 position on the substrate cleavage site. The positive electrostatic potential featured by the S1 region underlies this specificity. The comparative structural analysis highlights the peculiarity of the astrovirus protease, and differentiates it from the human and viral serine proteases.


Asunto(s)
Mamastrovirus/enzimología , Serina Endopeptidasas/química , Secuencia de Aminoácidos , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , Cartilla de ADN/genética , Humanos , Mamastrovirus/clasificación , Mamastrovirus/genética , Mamastrovirus/patogenicidad , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Electricidad Estática
8.
Biophys J ; 94(3): 820-31, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17905851

RESUMEN

The binding of blockers to the human voltage-gated Kv1.5 potassium ion channel is investigated using a three-step procedure consisting of homology modeling, automated docking, and binding free energy calculations from molecular dynamics simulations, in combination with the linear interaction energy method. A reliable homology model of Kv1.5 is constructed using the recently published crystal structure of the Kv1.2 channel as a template. This model is expected to be significantly more accurate than earlier ones based on less similar templates. Using the three-dimensional homology model, a series of blockers with known affinities are docked into the cavity of the ion channel and their free energies of binding are calculated. The predicted binding free energies are in very good agreement with experimental data and the binding is predicted to be mainly achieved through nonpolar interactions, whereas the relatively small differences in the polar contribution determine the specificity. Apart from confirming the importance of residues V505, I508, V512, and V516 for ligand binding in the cavity, the results also show that A509 and P513 contribute significantly to the nonpolar binding interactions. Furthermore, we find that pharmacophore models based only on optimized free ligand conformations may not necessarily capture the geometric features of ligands bound to the channel cavity. The calculations herein give a detailed structural and energetic picture of blocker binding to Kv1.5 and this model should thus be useful for further ligand design efforts.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio Kv1.5/química , Canal de Potasio Kv1.5/ultraestructura , Modelos Químicos , Modelos Moleculares , Bloqueadores de los Canales de Potasio/química , Sitios de Unión , Simulación por Computador , Ligandos , Unión Proteica , Conformación Proteica , Agua/química
9.
Bioorg Med Chem ; 15(24): 7795-802, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17888664

RESUMEN

We report high-throughput structure-based virtual screening of putative Flavivirus 2'-O-methyltransferase inhibitors together with results from subsequent bioassay tests of selected compounds. Potential inhibitors for the S-adenosylmethionine binding site were explored using 2D similarity searching, pharmacophore filtering and docking. The inhibitory activities of 15 top-ranking compounds from the docking calculations were tested on a recombinant methyltransferase with the RNA substrate (7Me)GpppAC(5). Local and global docking simulations were combined to estimate the ligand selectivity for the target site. The results of the combined computational and experimental screening identified a novel inhibitor, with a previously unknown scaffold, that has an IC(50) value of 60 microM.


Asunto(s)
Virus del Dengue/efectos de los fármacos , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Metiltransferasas/biosíntesis , ARN Mensajero/biosíntesis , Sitios de Unión , Bioensayo , Virus del Dengue/enzimología , Virus del Dengue/genética , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Concentración 50 Inhibidora , Ligandos , Metiltransferasas/antagonistas & inhibidores , Modelos Moleculares , Estructura Molecular , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Ensamble de Virus/efectos de los fármacos
10.
Biochemistry ; 45(36): 10807-14, 2006 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-16953566

RESUMEN

We report results from microscopic molecular dynamics and free energy perturbation simulations of substrate binding and selectivity for the Escherichia coli high-affinity ammonium transporter AmtB. The simulation system consists of the protein embedded in a model membrane/water surrounding. The calculated absolute binding free energies for the external NH(4)(+) ions are between -5.8 and -7.3 kcal/mol and are in close agreement with experimental data. The apparent pK(a) of the bound NH(4)(+) increases by more than 4 units, indicating a preference for binding ammonium ion and not neutral ammonia. The external binding site is also selective for NH(4)(+) toward monovalent metal cations by 2.4-4.4 kcal/mol. The externally bound NH(4)(+) shows strong electrostatic interactions with the proximal buried Asp160, stabilized in the anionic form, whereas the interactions with the aromatic rings of Phe107 and Trp148, lining the binding cavity, are less pronounced. Simulated mutation of the highly conserved Asp160 to Asn reduces the pK(a) of the bound ammonium ion by approximately 7 units and causes loss of its binding. The calculations further predict that the substrate affinity of E. coli AmtB depends on the ionization state of external histidines. The computed free energies of hypothetical intermediate states related to transfer of NH(3), NH(4)(+), or H(2)O from the external binding site to the first position inside the internal channel pore favor permeation of the neutral species through the channel interior. However, the predicted change in the apparent pK(a) of NH(4)(+) upon translocation from the external site, Am1, to the first internal site, Am2, indicates that ammonium ion becomes deprotonated only when it enters the channel interior.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Biología Computacional/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Conformación Proteica , Compuestos de Amonio Cuaternario/metabolismo , Agua
12.
FEBS Lett ; 554(1-2): 159-64, 2003 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-14596932

RESUMEN

External tetraalkylammonium ion binding to potassium channels is studied using microscopic molecular modelling methods and the experimental structure of the KcsA channel. Relative binding free energies of the KcsA complexes with Me4N+, Et4N+, and n-Pr4N+ are calculated with the molecular dynamics free energy perturbation approach together with automated ligand docking. The four-fold symmetry of the entrance cavity formed by the Tyr82 residues is found to provide stronger binding for the D2d than for the S4 conformation of the ligands. In agreement with experiment the Et4N+ blocker shows several kcal/mol better binding than the other tetraalkylammonium ions.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Compuestos de Amonio Cuaternario/farmacología , Sitios de Unión , Ligandos , Modelos Químicos , Modelos Moleculares , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio , Unión Proteica , Relación Estructura-Actividad , Tetraetilamonio/farmacología , Termodinámica
13.
Biochim Biophys Acta ; 1652(1): 35-51, 2003 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-14580995

RESUMEN

Binding of R(+)-bupivacaine to open-state homology models of the mammalian K(v)1.5 membrane ion channel is studied using automated docking and molecular dynamics (MD) methods. Homology models of K(v)1.5 are built using the 3D structures of the KcsA and MthK channels as a template. The packing of transmembrane (TM) alpha-helices in the KcsA structure corresponds to a closed channel state. Opening of the channel may be reached by a conformational transition yielding a bent structure of the internal S6 helices. Our first model of the K(v) open state involves a PVP-type of bending hinge in the internal helices, while the second model corresponds to a Gly-type of bending hinge as found in the MthK channel. Ligand binding to these models is probed using the common local anaesthetic bupivacaine, where blocker binding from the intracellular side of the channel is considered. Conformational properties and partial atomic charges of bupivacaine are determined from quantum mechanical HF/6-31G* calculations with inclusion of solvent effects. The automated docking and MD calculations for the PVP-bend model predict that bupivacaine could bind either in the central cavity or in the PVP region of the channel pore. Linear interaction energy (LIE) estimates of the binding free energies for bupivacaine predict strongest binding to the PVP region. Surprisingly, no binding is predicted for the Gly-bend model. These results are discussed in light of electrophysiological data which show that the K(v)1.5 channel is unable to close when bupivacaine is bound.


Asunto(s)
Bupivacaína/química , Bupivacaína/farmacología , Activación del Canal Iónico , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/química , Secuencia de Aminoácidos , Animales , Bupivacaína/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Teoría Cuántica , Ratas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Solventes/química , Estereoisomerismo , Termodinámica
14.
J Am Chem Soc ; 124(34): 10130-5, 2002 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12188677

RESUMEN

Results from theoretical calculations of (16)O/(18)O equilibrium isotope effects (EIEs) on deprotonation of phosphate and methyl phosphate monoanions as well as their deuterated counterparts are reported. The EIEs are calculated from the Bigeleisen equation using harmonic vibrational frequencies from several quantum mechanical methods (HF, DFT, MP2, and AM1). All methods correctly predict the qualitative trends in the EIEs related to the different isotope substitutions. However, the calculated gas-phase values are found to be systematically higher than those experimentally observed in aqueous solution. On the other hand, the addition of explicit solvent molecules (up to 24 waters) in the first solvation shells of the phosphate ion substantially improves the calculated EIE, which approaches the experimental value with increasing size of the water cluster. The large effects of surrounding water molecules on the phosphate deprotonation EIE can be explained by the strong solute-solvent interactions, which result in solvent coupled vibrational modes of the phosphate ions.


Asunto(s)
Organofosfatos/química , Deuterio , Hidrólisis , Cinética , Modelos Químicos , Modelos Moleculares , Isótopos de Oxígeno , Protones , Teoría Cuántica , Solventes/química , Agua/química
15.
Acc Chem Res ; 35(6): 358-65, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12069620

RESUMEN

Simplified free energy calculations based on force field energy estimates of ligand-receptor interactions and thermal conformational sampling have emerged as a useful tool in structure-based ligand design. Here we give an overview of the linear interaction energy (LIE) method for calculating ligand binding free energies from molecular dynamics simulations. A notable feature is that the binding energetics can be predicted by considering only the intermolecular interactions of the ligand in the associated and dissociated states. The approximations behind this approach are examined, and different parametrizations of the model are discussed. LIE-type methods appear particularly promising for computational "lead optimization". Recent applications to protein-protein interactions and ion channel blocking are also discussed.


Asunto(s)
Simulación por Computador , Proteínas/química , Animales , Humanos , Ligandos , Movimiento (Física) , Unión Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...