Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37371872

RESUMEN

Triazole and imidazole fungicides are an emerging class of contaminants with an increasing and ubiquitous presence in the environment. In mammals, their reproductive toxicity has been reported. Concerning male reproduction, a combinatorial activity of tebuconazole (TEB; triazole fungicide) and econazole (ECO; imidazole compound) in inducing mitochondrial impairment, energy depletion, cell cycle arrest, and the sequential activation of autophagy and apoptosis in Sertoli TM4 cells (SCs) has recently been demonstrated. Given the strict relationship between mitochondrial activity and reactive oxygen species (ROS), and the causative role of oxidative stress (OS) in male reproductive dysfunction, the individual and combined potential of TEB and ECO in inducing redox status alterations and OS was investigated. Furthermore, considering the impact of cyclooxygenase (COX)-2 and tumor necrosis factor-alpha (TNF-α) in modulating male fertility, protein expression levels were assessed. In the present study, we demonstrate that azoles-induced cytotoxicity is associated with a significant increase in ROS production, a drastic reduction in superoxide dismutase (SOD) and GSH-S-transferase activity levels, and a marked increase in the levels of oxidized (GSSG) glutathione. Exposure to azoles also induced COX-2 expression and increased TNF-α production. Furthermore, pre-treatment with N-acetylcysteine (NAC) mitigates ROS accumulation, attenuates COX-2 expression and TNF-α production, and rescues SCs from azole-induced apoptosis, suggesting a ROS-dependent molecular mechanism underlying the azole-induced cytotoxicity.

2.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628239

RESUMEN

Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential cooperative toxic effects. Toxicant-induced oxidative stress (OS) may be an important mechanism potentially involved in male reproductive dysfunction. Thus, to clarify the molecular mechanism underlying the effects of azoles on male reproduction, the individual and combined potential of fluconazole (FCZ), prochloraz (PCZ), miconazole (MCZ), and ketoconazole (KCZ) in triggering in vitro toxicity, redox status alterations, and OS in mouse TM4 Sertoli cells (SCs) was investigated. In the present study, we demonstrate that KCZ and MCZ, alone or in synergistic combination with PCZ, strongly impair SC functions, and this event is, at least in part, ascribed to OS. In particular, azoles-induced cytotoxicity is associated with growth inhibitory effects, G0/G1 cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, imbalance of the superoxide dismutase (SOD) specific activity, glutathione (GSH) depletion, and apoptosis. N-acetylcysteine (NAC) inhibits ROS accumulation and rescues SCs from azole-induced apoptosis. PCZ alone exhibits only cytostatic and pro-oxidant properties, while FCZ, either individually or in combination, shows no cytotoxic effects up to 320 µM.


Asunto(s)
Cetoconazol , Miconazol , Animales , Apoptosis , Glutatión/metabolismo , Imidazoles/metabolismo , Imidazoles/farmacología , Cetoconazol/farmacología , Masculino , Mamíferos/metabolismo , Ratones , Miconazol/farmacología , Mitocondrias/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
3.
Front Oncol ; 12: 863639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463316

RESUMEN

The assessment of RAS and BRAF mutational status is one of the main steps in the diagnostic and therapeutic algorithm of metastatic colorectal cancer (mCRC). Multiple mutations in the BRAF and RAS pathway are described as a rare event, with concurrent variants in KRAS and BRAF genes observed in approximately 0.05% of mCRC cases. Here, we report data from a case series affected by high-risk stage III and stage IV CRC and tested for RAS and BRAF mutation, treated at our Medical Oncology Unit. The analysis of KRAS, NRAS (codons 12, 13, 59, 61, 117, 146), and BRAF (codon 600) hotspot variants was performed in 161 CRC tumors from August 2018 to September 2021 and revealed three (1.8%) patients showing mutations in both KRAS and BRAF (V600E), including two cases with earlier CRC and one with metastatic disease. We also identified one patient (0.6%) with a mutation in both KRAS and NRAS genes and another one (0.6%) with a double KRAS mutation. Notably, the latter was characterized by aggressive behavior and poor clinical outcome. The mutational status, pathological features, and clinical history of these five CRC cases are described. Overall, this study case series adds evidence to the limited available literature concerning both the epidemiological and clinical aspects of CRC cases characterized by the presence of concurrent RAS/BRAF variants. Future multicentric studies will be required to increase the sample size and provide additional value to results observed so far in order to improve clinical management of this subgroup of CRC patients.

4.
J Dairy Res ; 88(4): 468-474, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34866559

RESUMEN

The work reported in this paper addresses the iodine nutritional deficiency that still affects a large number of people. For this purpose, we analyzed the possibility to use, as iodine vehicle, a hard typical ewe cheese, called Canestrato d'Abruzzo, derived from milk of ewes fed with an iodine-fortified diet. Both in the milk and the cheese of these animals, the iodine level was higher than that measured in sheep with a normal diet. An increase in the lactoferrin and iron content was evident in the whey derived from milk of the iodine group. Furthermore, in derived cheese, the caseins seemed more efficiently transformed in small peptides making the product more digestible and, for this reason, particularly suitable for feeding the elderly. In conclusion, the dairy products obtained from ewes fed with iodine diet contain more bioactive compounds so that they represent a useful food to prevent iodine and iron deficiency in lamb and humans.


Asunto(s)
Queso , Yodo , Animales , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Leche , Ovinos
5.
Transl Vis Sci Technol ; 10(6): 8, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-34111255

RESUMEN

Purpose: The study investigates the regulatory effects exhibited by lysate of Lactobacillus sakei pro-Bio65 (4%; L.SK) on the human conjunctival epithelial (HCE) cell line. Methods: Trypan blue and methylthiazol tetrazolium (MTT) methods were used to assess cell growth and viability. Mitochondrial membrane potential was assessed by JC-1 staining and cytofluorimetric detection methods. The antioxidant pattern and the intracellular reactive oxygen species (ROS) levels were analyzed by spectrophotometric and spectrofluorimetric methods. NF-κB luciferase activity was quantified by luminometric detection. NF-κB nuclear translocation, as well as mitochondrial morphology, were investigated by immunofluorescence using confocal microscopy. Cytokines and COX2 expression levels were determined by Western blot analyses. Results: This study demonstrates that L.SK exposure does not influence HCE cell proliferation and viability in vitro. L.SK paraprobiotic induces mild-low levels of intracellular ROS. It is coupled to changes in the mitochondrial membrane potential (ΔΨm), in a context of a regular mitochondrial-network organization. The negative modulation of tumor necrosis factor alpha (TNF-α) expression levels and rising antioxidant defense efficiency, mediated by the upregulation of glutathione (GSH) and increased antioxidant enzymatic activities, were observed. Conclusions: This study demonstrates that L.SK empowers the antioxidant endogenous efficiency of HCE cells, by the upregulation of the GSH content and the enzymatic antioxidant pattern, and concurrently reduces TNF-α protein expression. Translational Relevance: Although the obtained in vitro results should be confirmed by in vivo investigations, our data suggest the possibility of L.SK paraprobiotic application for promoting eye health, exploring its use as an endogen antioxidant system inducer in preventing and treating different oxidative stress-based, inflammatory, and age-related conditions.


Asunto(s)
Latilactobacillus sakei , Factor de Necrosis Tumoral alfa , Antioxidantes , Glutatión/metabolismo , Humanos , Latilactobacillus sakei/metabolismo , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256105

RESUMEN

Bisphenol A (BPA) is an endocrine disruptor that negatively affects spermatogenesis, a process where Sertoli cells play a central role. Thus, in the present study we sought to ascertain whether BPA could modulate the endocannabinoid (eCB) system in exposed mouse primary Sertoli cells. Under our experimental conditions, BPA turned out to be cytotoxic to Sertoli cells with an half-maximal inhibitory concentration (IC50) of ~6.0 µM. Exposure to a non-cytotoxic dose of BPA (i.e., 0.5 µM for 48 h) increased the expression levels of specific components of the eCB system, namely: type-1 cannabinoid (CB1) receptor and diacylglycerol lipase-α (DAGL-α), at mRNA level, type-2 cannabinoid (CB2) receptor, transient receptor potential vanilloid 1 (TRPV1) receptors, and DAGL-ß, at protein level. Interestingly, BPA also increased the production of inhibin B, but not that of transferrin, and blockade of either CB2 receptor or TRPV1 receptor further enhanced the BPA effect. Altogether, our study provides unprecedented evidence that BPA deranges the eCB system of Sertoli cells towards CB2- and TRPV1-dependent signal transduction, both receptors being engaged in modulating BPA effects on inhibin B production. These findings add CB2 and TRPV1 receptors, and hence the eCB signaling, to the other molecular targets of BPA already known in mammalian cells.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Endocannabinoides/metabolismo , Inhibinas/biosíntesis , Fenoles/toxicidad , Células de Sertoli/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo , Células de Sertoli/efectos de los fármacos , Transferrina/metabolismo
7.
J Pept Sci ; 26(9): e3271, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32585759

RESUMEN

Antimicrobial peptides (AMPs) appear as chemical compounds of increasing interest for their role in killing bacteria and, more recently, for their ability to bind endotoxin (lipopolysaccharide, LPS) that is released during bacterial infection and that may lead to septic shock. This dual role in the mechanism of action can further be enhanced in a synergistic way when two or more AMPs are combined together. Not all AMPs are able to bind LPS, suggesting that several modes of binding to the bacterial surface may exist. Here we analyze a natural AMP, crabrolin, and two mutated forms, one with increased positive charge (Crabrolin Plus) and the other with null charge (Crabrolin Minus), and compare their binding abilities to LPS. While Crabrolin WT as well Crabrolin Minus do not show binding to LPS, the mutated Crabrolin Plus exhibits binding and forms a well defined structure in the presence of LPS. The results strengthen the importance of positive charges for the binding to LPS and suggest the mutated form with increased positive charge as a promising candidate for antimicrobial and antiseptic activity.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Lipopolisacáridos/metabolismo , Mutación , Venenos de Avispas/farmacología , Péptidos Catiónicos Antimicrobianos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Unión Proteica , Conformación Proteica , Venenos de Avispas/química , Venenos de Avispas/genética
8.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861640

RESUMEN

Among natural products under investigation for their additive potential in cancer prevention and treatment, the flavonoid quercetin has received attention for its effects on the cell cycle arrest and apoptosis. In the past, we addressed this issue in K562 cells, a cellular model of the human chronic myeloid leukemia. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) proteomics with the aim to increase knowledge on the regulative and metabolic pathways modulated by quercetin in these cells. After 24 h of quercetin treatment, we observed that apoptosis was not completely established, thus we selected this time range to capture quantitative data. As a result, we were able to achieve a robust identification of 1703 proteins, and to measure fold changes between quercetin-treated and untreated cells for 1206 proteins. Through a bioinformatics functional analysis on a subset of 112 proteins, we propose that the apoptotic phenotype of K562 cells entails a significant modulation of the translational machinery, RNA metabolism, antioxidant defense systems, and enzymes involved in lipid metabolism. Finally, we selected eight differentially expressed proteins, validated their modulated expression in quercetin-treated K562 cells, and discussed their possible role in flavonoid cytotoxicity. This quantitative profiling, performed for the first time on this type of tumor cells upon treatment with a flavonoid, will contribute to revealing the molecular basis of the multiplicity of the effects selectively exerted by quercetin on K562 cells.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteoma/efectos de los fármacos , Proteómica/métodos , Quercetina/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Marcaje Isotópico , Células K562 , Metabolismo de los Lípidos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Factores de Tiempo
9.
Toxicol Sci ; 169(1): 209-223, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30698772

RESUMEN

Tebuconazole and Econazole are triazole and imidazole fungicides currently used worldwide. Although their reproductive toxicity in mammals has been described, their effect on male reproductive systems has been poorly investigated. As humans may be exposed to different azole compounds simultaneously, the combinational in vitro toxicity of Tebuconazole and Econazole (MIX) in mouse Sertoli TM4 cells was investigated. This study demonstrates that Tebuconazole (40 µM) and Econazole (20 µM) act synergistically in mediating decrease of mitochondrial membrane potential (ΔΨm) and changes in mitochondrial morphology. These events were associated with ATP depletion, cell cycle arrest, and sequential activation of autophagy and apoptosis. Remarkable differences on other parameters such as AMP/ATP ratio and adenylate energy charge were observed. Pharmacological inhibition of autophagy by bafilomycin A1 leads to enhanced MIX-induced apoptosis suggesting an adaptive cytoprotective function for MIX-modulated autophagy. Finally, a possible role of AMPK/ULK1 axis in mediating adaptive signalling cascades in response to energy stress was hypothesized. Consistently, ULK1 Ser 555 phosphorylation occurred in response to AMPK (Thr 172) activation. In conclusion, Tebuconazole and Econazole combination, at concentrations relevant for dermal and clinical exposure, induces a severe mitochondrial stress in SCs. Consequently, a prolonged exposure may affect the ability of the cells to re-establish homeostasis and trigger apoptosis.


Asunto(s)
Antifúngicos/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Econazol/toxicidad , Metabolismo Energético/efectos de los fármacos , Fungicidas Industriales/toxicidad , Mitocondrias/efectos de los fármacos , Células de Sertoli/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Triazoles/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Células de Sertoli/metabolismo , Células de Sertoli/patología , Transducción de Señal
10.
Biochim Biophys Acta Biomembr ; 1860(11): 2428-2435, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30026034

RESUMEN

BACKGROUND: Therapeutic options against Multi Drug Resistant (MDR) pathogens are limited and the overall strategy would be the development of adjuvants able to enhance the activity of therapeutically available antibiotics. Non-specific outer membrane permeabilizer, like metal-oxide nanoparticles, can be used to increase the activity of antibiotics in drug-resistant pathogens. The study aims to investigate the effect of cerium oxide nanoparticles (CeO2 NPs) on bacterial outer membrane permeability and their application in increasing the antibacterial activity of antibiotics against MDR pathogens. METHODS: The ability of CeO2 NPs to permeabilize Gram-negative bacterial outer membrane was investigated by calcein-loaded liposomes. The extent of the damage was evaluated using lipid vesicles loaded with FITC-dextran probes. The effect on bacterial outer membrane was evaluated by measuring the coefficient of permeability at increasing concentrations of CeO2 NPs. The interaction between CeO2 NPs and beta-lactams was evaluated by chequerboard assay against a Klebsiella pneumoniae clinical isolate expressing high levels of resistance against those antibiotics. RESULTS: Calcein leakage increases as NPs concentrations increase while no leakage was observed in FITC-dextran loaded liposomes. In Escherichia coli the outer membrane permeability coefficient increases in presence of CeO2 NPs. The antibacterial activity of beta-lactam antibiotics against K. pneumoniae was enhanced when combined with NPs. CONCLUSIONS: CeO2 NPs increases the effectiveness of antimicrobials which activity is compromised by drug resistance mechanisms. The synergistic effect is the result of the interaction of NPs with the bacterial outer membrane. The low toxicity of CeO2 NPs makes them attractive as antibiotic adjuvants against MDR pathogens.


Asunto(s)
Antibacterianos/metabolismo , Pared Celular/metabolismo , Escherichia coli/metabolismo , Klebsiella pneumoniae/metabolismo , Nanopartículas del Metal/química , Antibacterianos/química , Antibacterianos/farmacología , Pared Celular/química , Cerio/química , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Liposomas/química , Liposomas/metabolismo , Nanopartículas del Metal/toxicidad , Pruebas de Sensibilidad Microbiana , Permeabilidad
11.
Neuropharmacology ; 125: 87-98, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28729221

RESUMEN

Although early aversive postnatal events are known to increase the risk to develop psychiatric disorders later in life, rarely they determine alone the nature and outcome of the psychopathology, indicating that interaction with genetic factors is crucial for expression of psychopathologies in adulthood. Moreover, it has been suggested that early life experiences could have negative consequences or confer adaptive value in different individuals. Here we suggest that resilience or vulnerability to adult cocaine sensitivity depends on a "triple interaction" between genetic makeup x early environment x later experience. We have recently showed that Repeated Cross Fostering (RCF; RCF pups were fostered by four adoptive mothers from postnatal day 1 to postnatal day 4. Pups were left with the last adoptive mother until weaning) experienced by pups affected the response to a negative experience in adulthood in opposite direction in two genotypes leading DBA2/J, but not C57BL/6J mice, toward an "anhedonia-like" phenotype. Here we investigate whether exposure to a rewarding stimulus, instead of a negative one, in adulthood induces an opposite behavioral outcome. To test this hypothesis, we investigated the long-lasting effects of RCF on cocaine sensitivity in C57 and DBA female mice by evaluating conditioned place preference induced by different cocaine doses and catecholamine prefrontal-accumbal response to cocaine using a "dual probe" in vivo microdialysis procedure. Moreover, cocaine-induced c-Fos activity was assessed in different brain regions involved in processing of rewarding stimuli. Finally, cocaine-induced spine changes were evaluated in the prefrontal-accumbal system. RCF experience strongly affected the behavioral, neurochemical and morphological responses to cocaine in adulthood in opposite direction in the two genotypes increasing and reducing, respectively, the sensitivity to cocaine in C57 and DBA mice.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/psicología , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/patología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/psicología , Femenino , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distribución Aleatoria , Recompensa , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología , Especificidad de la Especie
12.
J Pept Sci ; 23(9): 693-700, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28580755

RESUMEN

A joint application of experimental and computational approaches has revealed the exceptionally high attitude of crabrolin, a 13-residue peptide with sequence FLPLILRKIVTAL-NH2 , to adopt alpha-helix conformation not only in membrane-mimicking solvents but also in the presence of a not negligible amount of water. Our study shows that this propensity essentially resides in the intrinsic thermodynamic stability of alpha-helix conformation whose kinetic stability is drastically reduced in water solvent. Our analysis suggests that this is due to two effects enhanced by water: a more local effect consisting of the demolition of intra-peptide H-bonds, essential for the alpha-helix formation, and a bulk - electrostatic - effect favoring conformational states more polar than alpha-helix. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Antibacterianos/química , Péptidos/química , Venenos de Avispas/química , Enlace de Hidrógeno , Conformación Proteica , Termodinámica
13.
Cell Biochem Funct ; 35(1): 33-41, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28052347

RESUMEN

Lactoferrin (Lf), a cationic iron-binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron-free bovine lactoferrin (apo-bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron-free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric-bLf was ineffective in the concentration range tested (from 1 to 12.5 µM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl-2, Sirt1, Mcl-1, and PARP-1 were modulated by 1.25 µM of apo-bLf. In the same cell line, apo-bLf induced apoptosis together with poly (ADP-ribose) polymerase cleavage, caspase activation, and a significant drop of NAD+ . In addition, apo-bLf-treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo-bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease.


Asunto(s)
Apoptosis/efectos de los fármacos , Lactoferrina/toxicidad , Animales , Western Blotting , Caspasas/metabolismo , Bovinos , Proliferación Celular/efectos de los fármacos , Glutatión/metabolismo , Células HeLa , Humanos , Microscopía Confocal , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , NAD/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
14.
Biopolymers ; 103(12): 692-701, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26285653

RESUMEN

Anoplin, a cationic decapeptide amide GLLKRIKTLL-NH2 derived from venom sac of the solitary wasp Anoplius samariensis has been investigated through Molecular Dynamics. The wild-type (WT) and four isoforms were simulated both in water and in the membrane-mimicking solvent trifluoroethanol (TFE). In water all the investigated species, found to be in rapid equilibrium between different conformational states, can be considered as unfolded. On the other hand, in TFE all the systems enhance their rigidity and, in general, show α-helix as the main folded conformation. Interestingly, a semi-quantitative thermodynamic analysis has suggested that the folding driving force is not always the same being in some cases (e.g., the WT Anoplin) of entropic nature and in other cases of energetic nature.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Simulación de Dinámica Molecular , Isoformas de Proteínas/química , Venenos de Avispas/química , Venenos de Avispas/genética , Pliegue de Proteína , Isoformas de Proteínas/genética , Estructura Secundaria de Proteína
15.
Biopolymers ; 102(2): 159-67, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24347202

RESUMEN

In this article, we report novel and additional results, both experimental and computational, obtained in our laboratories on the peptide P-113. In particular, our experimental results indicate that this peptide is endowed with a high target-cell selectivity towards yeast species, suggesting its potential development as a new drug against oral microbial infections. To provide additional structural insights, we performed several Molecular Dynamics simulations in different conditions. Results suggest that P-113 is a rather compact species presumably because of its highly charged state as emerged from the dramatic increase of internal fluctuation occurring upon point-mutation. The peptide turns out to adopt, in water, a beta-hairpin-like conformation and, in a more hydrophobic environment, is found to be in a (probably slow) equilibrium between α-helix and hairpin conformations. Complexation with Zn(2+) induces a drastic mechanical stabilization, which prevents any conformational organization of the peptide into a biologically active state.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Péptidos/farmacología , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Secundaria de Proteína , Soluciones , Termodinámica , Factores de Tiempo , Trifluoroetanol/química , Agua/química , Levaduras/efectos de los fármacos
16.
FEBS J ; 280(12): 2842-54, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23587102

RESUMEN

The human hepcidin 25 (hep-25) and its isoform hepcidin 20 (hep-20) are histidine-containing, cystein rich, ß-sheet structured peptides endowed with antimicrobial activity. We previously reported that, similar to other histidine-containing peptides, the microbicidal effects of hep-25 and hep-20 are highly enhanced at acidic pH. In the present study, we investigated whether pH influences the mode of action of hep-25 and hep-20 on Escherichia coli American Type Culture Collection 25922 and model membranes. A striking release of ß-galactosidase by hepcidin-treated E. coli was observed at pH 5.0, whereas no inner membrane permeabilization capacity was seen at pH 7.4, even at bactericidal concentrations. Similar results were obtained by flow cytometry when assessing the internalization of propidium iodide by hepcidin-treated E. coli. Scanning electron microscope imaging revealed that both peptides induced the formation of numerous blebs on the surface of bacterial cells at acidic pH but not at neutral pH. Moreover, a phospholipid/polydiacetylene colourimetric vesicle assay revealed a more evident membrane damaging effect at pH 5.0 than at pH 7.4. The leakage of entrapped dextrans of increasing molecular size from liposomes was also assessed at pH 7.4. Consistent with the lack of ß-galactosidase release from whole E. coli observed at such a pH value, evident leakage of only the smallest 4-kDa dextran (and not of dextrans of 20 or 70 kDa) was observed, indicating a poor ability of hepcidin peptides to permeabilize liposome vesicles at pH 7.4. Altogether, the data obtained in the present study using different approaches strongly suggest that the ability of hepcidins to perturb bacterial membranes is markedly pH-dependent.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Dextranos/química , Escherichia coli/enzimología , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/metabolismo , Hepcidinas , Humanos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Rastreo , Fragmentos de Péptidos/química , Liposomas Unilamelares/química , beta-Galactosidasa/metabolismo
17.
J Antimicrob Chemother ; 62(5): 991-7, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18755695

RESUMEN

OBJECTIVES: The aim of this article is biochemical and kinetic characterization of CTX-M-43, a natural Asp-240-->Gly mutant of CTX-M-44 (ex Toho-1), from a clinical isolate of Acinetobacter baumannii isolated in a Bolivian hospital. METHODS: Steady-state kinetic parameters (K(m) and k(cat)) were determined for a large pattern of substrates. Analysis of inactivators and transient inactivators was performed to determine the efficiency of acylation (k(+2)/K) and the deacylation constant (k(+3)). Molecular modelling of Michaelis complex of ceftazidime, cefotaxime and ceftibuten, obtained from molecular mechanics calculations, was carried out. RESULTS: CTX-M-43 showed a general increase in affinity towards all cephalosporins tested, with respect to CTX-M-44. Carbapenems acted as inactivators with a good acylation efficiency for meropenem and ertapenem and significant deacylation constant for imipenem. MICs of imipenem obtained at a higher bacterial inoculum of recombinant Escherichia coli were increased. CONCLUSIONS: Kinetic data and molecular modelling of Michaelis complex confirmed that Asp-240-->Gly allows a better accommodation of the bulky C7beta aminothiazol-oxyimino substituent, resulting in a general increase in the enzyme affinity towards oxyimino cephalosporins. The ascertained potentialities of CTX-M-type enzymes, supported by the kinetic data and the behaviour of the recombinant E. coli at different bacterial inocula towards carbapenems, make a possible evolution of those enzymes towards a carbapenemase activity plausible.


Asunto(s)
Acinetobacter baumannii/enzimología , Antibacterianos/farmacología , Ceftazidima/farmacología , Mutación Missense , beta-Lactamasas/metabolismo , beta-Lactamas/metabolismo , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Adulto , Sustitución de Aminoácidos/genética , Bolivia , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Humanos , Cinética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Terciaria de Proteína , Especificidad por Sustrato , beta-Lactamasas/genética
18.
Antimicrob Agents Chemother ; 50(7): 2478-86, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16801429

RESUMEN

Sepsis remains a major cause of morbidity and mortality in hospitalized patients, despite intense efforts to improve survival. The primary lead for septic shock results from activation of host effector cells by endotoxin, the lipopolysaccharide (LPS) associated with cell membranes of gram-negative bacteria. For these reasons, the quest for compounds with antiendotoxin properties is actively pursued. We investigated the efficacy of the amphibian skin antimicrobial peptide temporin L in binding Escherichia coli LPS in vitro and counteracting its effects in vivo. Temporin L strongly bound to purified E. coli LPS and lipid A in vitro, as proven by fluorescent displacement assay, and readily penetrated into E. coli LPS monolayers. Furthermore, the killing activity of temporin L against E. coli was progressively inhibited by increasing concentrations of LPS added to the medium, further confirming the peptide's affinity for endotoxin. Antimicrobial assays showed that temporin L interacted synergistically with the clinically used beta-lactam antibiotics piperacillin and imipenem. Therefore, we characterized the activity of temporin L when combined with imipenem and piperacillin in the prevention of lethality in two rat models of septic shock, measuring bacterial growth in blood and intra-abdominal fluid, endotoxin and tumor necrosis factor alpha (TNF-alpha) concentrations in plasma, and lethality. With respect to controls and single-drug treatments, the simultaneous administration of temporin L and beta-lactams produced the highest antimicrobial activities and the strongest reduction in plasma endotoxin and TNF-alpha levels, resulting in the highest survival rates.


Asunto(s)
Antiinfecciosos/uso terapéutico , Bacterias Gramnegativas/efectos de los fármacos , Lipopolisacáridos/metabolismo , Proteínas/metabolismo , Proteínas/uso terapéutico , Choque Séptico/tratamiento farmacológico , Animales , Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos , Modelos Animales de Enfermedad , Quimioterapia Combinada , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/mortalidad , Humanos , Imipenem/uso terapéutico , Masculino , Pruebas de Sensibilidad Microbiana , Peritonitis/tratamiento farmacológico , Peritonitis/microbiología , Piperacilina/uso terapéutico , Ratas , Ratas Wistar , Choque Séptico/microbiología , Choque Séptico/mortalidad , beta-Lactamas/uso terapéutico
19.
Biochimie ; 86(9-10): 705-12, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15556281

RESUMEN

By computer modelling and protein engineering we have investigated changes in two amino acid residues located in the coenzyme pocket of the yeast Kluyveromyces lactis mitochondrial alcohol dehydrogenase III. These two residues, Gly 225 and Ala 274, were hypothesized to be involved in the enzyme discrimination between NAD(H) and NADP(H). Upon changing Gly 225 to Ala we produced an enzyme (mutant G225A) showing very little difference from the wild-type. On the contrary, change at position 274 of Phe instead of Ala (mutant A274F) caused a significant increase of K(m) values for NAD(P) and for NADPH and even a more marked decrease in catalytic activity. The k(cat)/K(m) rates for NADP(H) were also decreased in this mutant. Enzymes with the double changes at 225 and 274 (mutant G225A-A274F) showed, apart the substantial low K(m) value for NADPH and its high catalytic efficiency, kinetic parameters relative to coenzymes which were not additive over the single substitutions. Surprisingly, enzymes with changes at the two positions reduced efficiently acetaldehyde, displaying a K(m) value 10-fold lower and a catalytic efficiency sevenfold higher with respect to parent or singularly mutated enzymes. None of the engineered enzymes would convert formaldehyde, glutaraldehyde or aromatic aldehydes but all enzymes reduced propionaldehyde and butyraldehyde at relative reaction rates approximately half of that exhibited by acetaldehyde. Interestingly only mutant A274F was able to oxidize methanol almost as well as ethanol. In addition, this mutant was capable to convert secondary and cyclic alcohols, at a rate not detected in the other isoforms. These results are in general agreement with the prediction that increasing the size of amino acids in the proximity of the coenzyme pocket would hamper the accommodation of NADP but discord the increased affinity for NADPH as well as for alcoholic or aldehydic substrates with high steric hindrance.


Asunto(s)
Aldehído Oxidorreductasas/química , Sustitución de Aminoácidos/genética , Proteínas Fúngicas/química , Kluyveromyces/enzimología , Mitocondrias/enzimología , Aldehído Oxidorreductasas/genética , Secuencia de Aminoácidos , Proteínas Fúngicas/genética , Isoenzimas/química , Isoenzimas/genética , Cinética , Kluyveromyces/genética , Mitocondrias/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida
20.
Biochem Pharmacol ; 68(10): 2019-30, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15476673

RESUMEN

The in vitro effects of resveratrol (RES) on apoptotic pathway in human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells were investigated. RES treatment of both cell types significantly and irreversibly inhibited their growth, associated with extensive apoptosis and increase in hypodiploid cells. Cell cycle analysis showed accumulation in G(1) phase in HSB-2 drug exposed cells, while only K562-treated cells exhibited a marked accumulation in S phase with a concomitant decrease in G(1) and G(2)/M at 24 h. Moreover, RES caused internucleosomal DNA fragmentation, even if K562 cells were found less sensitive to the drug, as compared to HSB-2 cells, which also reacted earlier to the treatment. RES-induced apoptosis was associated with an increase of Bax expression and a marked release of cytochrome c from mitochondria. Interestingly, K562 cells exhibited a basal content of glutathione 10-fold that of HSB-2 cells, which increased after 24-48 h RES exposure, together with increment of glutathione reductase and peroxidase activities. However, the major resistance to apoptosis of K562 cells cannot be attributed to their higher pool of reducing power, since neither the inhibition of glutathione synthesis by buthionine sulphoximine nor glutathione depletion by diethylmaleate, sensitized these cells. In addition, glutathione enrichment of HSB-2 cells by N-acetylcysteine did not prevent the apoptotic effects of RES. Our data indicate that RES commitment to apoptosis in both cell lines is independent from the intracellular content of glutathione, while it is associated with either the enhanced expression of Bax and cytochrome c release.


Asunto(s)
Antioxidantes/farmacología , Apoptosis , Estilbenos/farmacología , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Activación Enzimática/efectos de los fármacos , Glutatión/metabolismo , Humanos , Células K562 , Leucemia/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Resveratrol , Células Tumorales Cultivadas , Proteína X Asociada a bcl-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...