Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38138312

RESUMEN

N- and S-doped CQDs were prepared using L-cysteine as a precursor. Different NS-CQDs/g-C3N4 composite photocatalysts were formed by modifying graphite-phase carbon nitride with different contents of NS-CQDs using a hydrothermal method. The morphology, constituent elements and functional groups of the composite photocatalysts were analyzed by SEM, EDS, TEM, Mapping, XRD and FT-IR as a proof of its successful preparation. Meanwhile, it was characterized by PL, UV-Vis DRS and electrochemical impedance, which proved that the CQDs could be used as an electronic memory in the composite system to accelerate the electron transfer induced by the photo-excitation of g-C3N4 and effectively inhibit the recombination of e--h+ improvement of the photocatalytic activity of g-C3N4. The stability of the composite photocatalysts under different conditions and the photodegradation activity of Rh B under visible light were investigated. It was found that the photocatalytic degradation efficiency of rhodamine B by NS-CQDS-modified g-C3N4 was significantly higher than that of pure g-C3N4, which could reach 90.82%, and its degradation rate was 3.5 times higher than that of pure g-C3N4. It was demonstrated by free radical trapping experiments that ·OH and ·O2- were the main active species in the photocatalytic degradation process, in which ·O2- played a guiding role.

2.
Micromachines (Basel) ; 14(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38138315

RESUMEN

By using melamine as a precursor for the copolymerization process, g-C3N4 and g-C3N4/TCNQ/Eu complexes with various amounts of doping were created. These complexes were then examined using XRD, FT-IR, SEM, TEM, XPS, PL, UV-vis, and I-T. The degradation rates of pefloxacin (PEF), enrofloxacin (ENR), and ciprofloxacin (CIP) were 91.1%, 90.8%, and 93.2% under visible light (λ > 550 nm). The photocatalytic performance of the composite was analyzed, and the best effect was obtained for CIP photocatalysis when Eu doping was 3 mg at 20 °C and pH 7. Kinetic analysis showed that there was a linear relationship between the sample and the photocatalytic time, and the degradation rate was about 5 times that of g-C3N4. The cyclic stability of the g-C3N4/TCNQ/Eu composite sample was found to be good through repeated experiments. UPLC-MS visualizes the degradation process of CIP. The extremely low stability of piperazine ring induced subsequent degradation, followed by the fracture of quinolone ring promoting the complete decomposition of CIP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...