Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Burns Trauma ; 11: tkad038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849945

RESUMEN

Background: The rapid turnover of the intestinal epithelium is driven by the proliferation and differentiation of intestinal stem cells (ISCs). The dynamics of the F-actin cytoskeleton are critical for maintaining intercellular force and the signal transduction network. However, it remains unclear how direct interference with actin polymerization impacts ISC homeostasis. This study aims to reveal the regulatory effects of the F-actin cytoskeleton on the homeostasis of intestinal epithelium, as well as the potential risks of benproperine (BPP) as an anti-tumor drug. Methods: Phalloidin fluorescence staining was utilized to test F-actin polymerization. Flow cytometry and IHC staining were employed to discriminate different types of intestinal epithelial cells. Cell proliferation was assessed through bromo-deoxyuridine (BrdU) and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays. The proliferation and differentiation of intestinal stem cells were replicated in vitro through organoid culture. Epithelial migration was evaluated through BrdU pulse labeling and chasing in mice. Results: The F-actin content was observed to significantly increase as crypt cells migrated into the villus region. Additionally, actin polymerization in secretory cells, especially in Paneth cells (PCs), was much higher than that in neighboring ISCs. Treatment with the newly identified actin-related protein 2/3 complex subunit 2 (ARPC2) inhibitor BPP led to a dose-dependent increase or inhibition of intestinal organoid growth in vitro and crypt cell proliferation in vivo. Compared with the vehicle group, BPP treatment decreased the expression of Lgr5 ISC feature genes in vivo and in organoid culture. Meanwhile, PC differentiation derived from ISCs and progenitors was decreased by inhibition of F-actin polymerization. Mechanistically, BPP-induced actin polymerization inhibition may activate the Yes1-associated transcriptional regulator pathway, which affects ISC proliferation and differentiation. Accordingly, BPP treatment affected intestinal epithelial cell migration in a dose-dependent manner. Conclusion: Our findings indicate that the regulation of cytoskeleton reorganization can affect ISC homeostasis. In addition, inhibiting ARPC2 with the Food and Drug Administration-approved drug BPP represents a novel approach to influencing the turnover of intestinal epithelial cells.

2.
Int Immunopharmacol ; 122: 110594, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37441807

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with few pharmacological treatments. Minocycline, a tetracycline derivative that inhibits microglial activation, has been well-identified with anti-inflammatory properties and neuroprotective effects. A growing body of research suggests that ASD is associated with neuroinflammation, abnormal neurotransmitter levels, and neurogenesis. Thus, we hypothesized that minocycline could improve autism-related behaviors by inhibiting microglia activation and altering neuroinflammation. To verify our hypothesis, we used a mouse model of autism, BTBR T + Itpr3tf/J (BTBR). As expected, minocycline administration rescued the sociability and repetitive, stereotyped behaviors of BTBR mice while having no effect in C57BL/6J mice. We also found that minocycline improved neurogenesis and inhibited microglia activation in the hippocampus of BTBR mice. In addition, minocycline treatment inhibited Erk1/2 phosphorylation in the hippocampus of BTBR mice. Our findings show that minocycline administration alleviates ASD-like behaviors in BTBR mice and improves neurogenesis, suggesting that minocycline supplementation might be a potential strategy for improving ASD symptoms.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Animales , Trastorno Autístico/tratamiento farmacológico , Trastorno del Espectro Autista/tratamiento farmacológico , Minociclina/uso terapéutico , Microglía , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Ratones Endogámicos , Modelos Animales de Enfermedad
3.
J Hazard Mater ; 453: 131379, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054645

RESUMEN

(R,S)-ketamine (ketamine) has been increasingly used recreationally and medicinally worldwide; however, it cannot be removed by conventional wastewater treatment plants. Both ketamine and its metabolite norketamine have been frequently detected to a significant degree in effluents, aquatic, and even atmospheric environments, which may pose risks to organisms and humans via drinking water and aerosols. Ketamine has been shown to affect the brain development of unborn babies, while it is still elusive whether (2 R,6 R)-hydroxynorketamine (HNK) induces similar neurotoxicity. Here, we investigated the neurotoxic effect of (2 R,6 R)-HNK exposure at the early stages of gestation by applying human cerebral organoids derived from human embryonic stem cells (hESCs). Short-term (2 R,6 R)-HNK exposure did not significantly affect the development of cerebral organoids, but chronic high-concentration (2 R,6 R)-HNK exposure at day 16 inhibited the expansion of organoids by suppressing the proliferation and augmentation of neural precursor cells (NPCs). Notably, the division mode of apical radial glia was unexpectedly switched from vertical to horizontal division planes following chronic (2 R,6 R)-HNK exposure in cerebral organoids. Chronic (2 R,6 R)-HNK exposure at day 44 mainly inhibited the differentiation but not the proliferation of NPCs. Overall, our findings indicate that (2 R,6 R)-HNK administration leads to the abnormal development of cortical organoids, which may be mediated by inhibiting HDAC2. Future clinical studies are needed to explore the neurotoxic effects of (2 R,6 R)-HNK on the early development of the human brain.


Asunto(s)
Células Madre Embrionarias Humanas , Ketamina , Células-Madre Neurales , Humanos , Ketamina/metabolismo , Antidepresivos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células-Madre Neurales/metabolismo , Encéfalo/metabolismo
4.
ACS Appl Mater Interfaces ; 15(13): 16552-16561, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36960922

RESUMEN

Water electrolysis in alkaline media is the most promising technology for hydrogen production, but efficient electrocatalysts are required to reduce the overpotential in HER and OER processes. In this work, the multicomponent transition metal catalyst Cr-Cu/CoOx was loaded on copper foam by electrodeposition and annealing, and the catalyst exhibited excellent electrochemical activity. The HER overpotential is 21 mV and the OER overpotential is 252 mV at a current density of 10 mA cm-2. The overall water splitting voltage is 1.51 V, even better than the Pt/C//RuO2 two-electrode system (1.61 V). The excellent performance of this catalyst is mainly derived from the close synergistic interaction among Cu, Co, and Cr. The doping of Cr modulates the valence states of Cu and Co at the active sites and improves the adsorption of various reaction intermediates. Density functional theory (DFT) calculations show that the doping of Cr can optimize the adsorption of the reaction intermediate H*. Meanwhile, the high-valent Cr and Co promote hydrolysis through strong adsorption with OH-. The present work provides a reasonable strategy for designing low-cost transition metals as efficient catalysts for water electrolysis.

5.
Front Cell Dev Biol ; 9: 688655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327201

RESUMEN

Transient Receptor Potential Canonical 6 (TRPC6) has been suggested to be involved in synapse function and contribute to hippocampal-dependent cognitive processes. Gene silencing of TRPC6 was performed by injecting adeno-associated virus (AAV) expressing TRPC6-specific shRNA (shRNA-TRPC6) into the hippocampal dentate gyrus (DG). Spatial learning, working memory and social recognition memory were impaired in the shRNA-TRPC6 treated mice compared to control mice after 4 weeks. In addition, gene ontology (GO) analysis of RNA-sequencing revealed that viral intervention of TRPC6 expression in DG resulted in the enrichment of the process of synaptic transmission and cellular compartment of synaptic structure. KEGG analysis showed PI3K-Akt signaling pathway were significantly down-regulated. Furthermore, the shRNA-TRPC6 treatment reduced dendritic spines of DG granule neurons, in terms of spine loss, the thin and mushroom types predominated. Accompanying the spine loss, the levels of PSD95, pAkt and CREB in the hippocampus were decreased in the shRNA-TRPC6 treated animals. Taken together, our results suggest that knocking down TRPC6 in the DG have a disadvantageous effect on cognitive processes.

6.
Toxicol Appl Pharmacol ; 390: 114881, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31954762

RESUMEN

BACKGROUND/AIMS: Ethanol (EtOH) exposure during a period comparable to the third trimester in human results in obvious neurotoxicity in the developing hippocampus and persistent deficits in hippocampal neurogenesis. Dexmedetomidine (DEX), a highly selective α-2-adrenergic agonist has been demonstrated to restore the impaired neurogenesis and neuronal plasticity in the dentate gyrus (DG) that follows neurological insult. However, the protective roles of DEX in the EtOH-induced deficits of postnatal neurogenesis in the hippocampus are still unknown. METHODS: Mice were pretreated with DEX prior to EtOH exposure to determine its protective effects on impaired postnatal hippocampal neurogenesis. Six-day-old neonatal mice were treated with DEX (125 µg/kg) or saline, followed by EtOH at a total of 5 g/kg or an equivalent volume of saline on P7. Immunohistochemistry and immunofluorescence were used to evaluate the neurogenesis and activated microglia in the DG. Quantitative real time PCR (qRT-PCR) was utilized to assess the expression of inflammatory factors in the hippocampus. RESULTS: DEX pretreatment attenuated the inhibition of EtOH-mediated hippocampal neurogenesis and the reduction of hippocampal neural precursor cells (NPCs). We further confirmed that DEX pretreatment reversed the EtOH-induced microglia activation in the DG as well as the upregulation of the hippocampal TNFα, MCP-1, IL-6, and IL-1ß mRNA levels. CONCLUSION: Our findings indicate that DEX pretreatment protects against EtOH-mediated inhibition of hippocampal neurogenesis in postnatal mice and reverses EtOH-induced neuroinflammation via repressing microglia activation and the expression of inflammatory cytokines.


Asunto(s)
Dexmedetomidina/farmacología , Etanol/toxicidad , Hipocampo/citología , Hipnóticos y Sedantes/farmacología , Neurogénesis/efectos de los fármacos , Animales , Animales Recién Nacidos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Ratones , Microglía/efectos de los fármacos
7.
Materials (Basel) ; 12(22)2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752215

RESUMEN

Precision glass molding is a revolutionary technology for achieving high precision and efficient manufacturing of glass aspheric lenses. The material properties of glass, including elastic modulus and viscosity, are highly dependent on temperature fluctuations. This paper aims to investigate the effect of elastic modulus on the high-temperature viscoelasticity of glass and the accuracy of the finite element simulation of the molding process for glass aspheric lenses. The high-temperature elastic modulus of D-ZK3L glass is experimentally measured and combined with the glass cylinder compression creep curve to calculate the high temperature viscoelasticity of D-ZK3L. Three groups of viscoelastic parameters are obtained. Based on this, the molding process of the molded aspheric lens is simulated by the nonlinear finite element method (FEM). The surface curves of lenses obtained by simulation and theoretical analyses are consistent. The simulation results obtained at different initial elastic modulus values indicate that the elastic modulus has a great influence on the precision of the FEM-based molding process of glass aspheric lenses.

9.
Exp Cell Res ; 365(1): 24-32, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29453975

RESUMEN

BACKGROUND/AIM: Increasing evidence show microRNAs (miRNAs) are associated with hepatopulmonary syndrome (HPS). The aim of this study was to investigate the role of miR-144 in the angiogenesis of HPS, as well as to identify its underlying mechanism. METHODS: The expression levels of miR-144-3p were assessed in pulmonary micro-vascular endothelial cells (PMVECs), as well as in lung tissues from rats with HPS. We predicted the potential target of miR-144-3p. Tyrosine kinase 2(Tie2) was identified as a target gene of miR144-3p, which has an essential role in the angiogenesis of lung vessel. In addition, the effects of miR-144-3p regulated on Tie2 was examined. The upregulation and down-regulation of miR-144-3p can affect the proliferation of PMVECs. RESULTS: We found that the levels of miR-144-3p were frequently downregulated in HPS tissues and cell lines, and overexpression of miR-144-3p dramatically inhibited PMVECs proliferation and cell cycle. We further verified the Tie2 as a novel and direct target of miR-144-3p in HPS. CONCLUSION: miR-144-3p can negatively regulate PMVECs proliferation by Tie2 expression. In addition, overexpression of miR-144-3p may prove beneficial as a therapeutic strategy for HPS treatment.


Asunto(s)
Proliferación Celular/genética , Células Endoteliales/patología , Síndrome Hepatopulmonar/genética , MicroARNs/genética , Neovascularización Patológica/genética , Receptor TIE-2/genética , Animales , Células Cultivadas , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica/genética , Síndrome Hepatopulmonar/patología , Masculino , Neovascularización Patológica/patología , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/genética
10.
Neuropharmacology ; 131: 475-486, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29241655

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. In addition to cognitive impairments, deficits in non-cognitive behaviors are also common neurological sequelae in AD. Here, we show that complex behavioral deficits in 7-month-old APPswe/PSEN1dE9 (APP/PS1) mice include impairments in object recognition, deficient social interaction, increased depression and buried marbles. Citalopram, one of the selective serotonin reuptake inhibitors (SSRIs), ameliorated the amyloid deposition in AD patients and transgenic animal models. After treatment for 4 weeks, citalopram rescued the deficits in short-term memory, sociability and depression in these mice. Further immunohistochemical analysis showed chronic citalopram treatment significantly attenuated ß-amyloid deposition and microglial activation in the brains of APP/PS1 mice as demonstrated previously. Parvalbumin (PV) interneurons, which are the primary cellular subtype of GABAergic neurons and considered indispensable for short-term memory and social interaction, also contributed to the progress of depression. Additionally, we found the citalopram could significantly increase the PV-positive neurons in the cortex of APP/PS1 mice without alteration in the hippocampus, which might contribute to the improvement of behavioral performance. Our findings suggest that citalopram might be a potential candidate for the early treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Citalopram/farmacología , Memoria a Corto Plazo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nootrópicos/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Memoria a Corto Plazo/fisiología , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Parvalbúminas/metabolismo , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/metabolismo , Placa Amiloide/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...