Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Kaohsiung J Med Sci ; 39(6): 554-564, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36912495

RESUMEN

Radiation therapy is recognized as an effective modality in the treatment of lung cancer, but radioresistance resulting from prolonged treatment reduces the chances of recovery. MicroRNAs (miRNAs) play a pivotal role in radiotherapy immunity. In this study, we aimed to investigate the mechanism by which miR-196a-5p affects radioresistance in lung cancer. The radioresistant lung cancer cell line A549R26-1 was established by radiation treatment. Cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) were observed by microscopy, and the expression levels of CAF-specific marker proteins were detected by immunofluorescence. The shape of the exosomes was observed by electron microscopy. A CCK-8 assay was used to detect cell viability, while clone formation assays were used to detect cell proliferative capacity. Flow cytometry was performed to investigate apoptosis. The binding of miR-196a-5p and NFKBIA was predicted and further verified by the dual luciferase reporter experiment. qRT-PCR and western blotting were used to detect gene mRNA and protein levels. We found that exosomes secreted by CAFs could enhance lung cancer cell radioresistance. Moreover, miR-196a-5p potentially bound to NFKBIA, promoting malignant phenotypes in radioresistant cells. Furthermore, exosomal miR-196a-5p derived from CAFs increased radiotherapy immunity in lung cancer. Exosomal miR-196a-5p derived from CAFs enhanced radioresistance in lung cancer cells by downregulating NFKBIA, providing a new potential target for the treatment of lung cancer.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Proliferación Celular/genética , Fibroblastos Asociados al Cáncer/patología , Fibroblastos/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Inhibidor NF-kappaB alfa/genética
2.
BMC Genet ; 21(1): 105, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928120

RESUMEN

BACKGROUND: Plant calmodulin-binding transcription activator (CAMTA) proteins play important roles in hormone signal transduction, developmental regulation, and environmental stress tolerance. However, in wheat, the CAMTA gene family has not been systematically characterized. RESULTS: In this work, 15 wheat CAMTA genes were identified using a genome-wide search method. Their chromosome location, physicochemical properties, subcellular localization, gene structure, protein domain, and promoter cis-elements were systematically analyzed. Phylogenetic analysis classified the TaCAMTA genes into three groups (groups A, B, and C), numbered 7, 6, and 2, respectively. The results showed that most TaCAMTA genes contained stress-related cis-elements. Finally, to obtain tissue-specific and stress-responsive candidates, the expression profiles of the TaCAMTAs in various tissues and under biotic and abiotic stresses were investigated. Tissue-specific expression analysis showed that all of the 15 TaCAMTA genes were expressed in multiple tissues with different expression levels, as well as under abiotic stress, the expressions of each TaCAMTA gene could respond to at least one abiotic stress. It also found that 584 genes in wheat genome were predicted to be potential target genes by CAMTA, demonstrating that CAMTA can be widely involved in plant development and growth, as well as coping with stresses. CONCLUSIONS: This work systematically identified the CAMTA gene family in wheat at the whole-genome-wide level, providing important candidates for further functional analysis in developmental regulation and the stress response in wheat.


Asunto(s)
Proteínas de Unión al Calcio/genética , Familia de Multigenes , Proteínas de Plantas/genética , Transactivadores/genética , Triticum/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Regiones Promotoras Genéticas , Estrés Fisiológico
3.
BMC Genet ; 21(1): 69, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631217

RESUMEN

BACKGROUND: Activated charcoal (AC) is highly adsorbent and is often used to promote seedling growth in plant tissue culture; however, the underlying molecular mechanism remains unclear. In this study, root and leaf tissues of 10-day-old seedlings grown via immature embryo culture in the presence or absence of AC in the culture medium were subjected to global transcriptome analysis by RNA sequencing to provide insights into the effects of AC on seedling growth. RESULTS: In total, we identified 18,555 differentially expressed genes (DEGs). Of these, 11,182 were detected in the roots and 7373 in the leaves. In seedlings grown in the presence of AC, 9460 DEGs were upregulated and 7483 DEGs were downregulated in the presence of AC as compared to the control. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed 254 DEG-enriched pathways, 226 of which were common between roots and leaves. Further analysis of the major metabolic pathways revealed that AC stimulated the expression of nine genes in the phenylpropanoid biosynthesis pathway, including PLA, CYP73A, COMT, CYP84A, and 4CL, the protein products of which promote cell differentiation and seedling growth. Further, AC upregulated genes involved in plant hormone signaling related to stress resistance and disease resistance, including EIN3, BZR1, JAR1, JAZ, and PR1, and downregulated genes related to plant growth inhibition, including BKI1, ARR-B, DELLA, and ABF. CONCLUSIONS: Growth medium containing AC promotes seedling growth by increasing the expression of certain genes in the phenylpropanoid biosynthesis pathway, which are related to cell differentiation and seedling growth, as well as genes involved in plant hormone signaling, which is related to resistance.


Asunto(s)
Carbón Orgánico , Perfilación de la Expresión Génica , Plantones/crecimiento & desarrollo , Triticum/genética , Regulación de la Expresión Génica de las Plantas , Fenilpropionatos/metabolismo , Plantones/genética , Transcriptoma , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA