Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
SLAS Technol ; 29(5): 100184, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39209114

RESUMEN

The advanced prostate biopsy robot system has broad application prospects in clinical practice, but due to the deformation and distortion between MR-TRUS (magnetic resonance transrectal ultrasound) images, it poses challenges in biopsy accuracy and safety. The study utilized an advanced prostate biopsy robot system based on MR-TRUS image flexible registration technology and conducted experiments on animal models. Retrospective analysis of the puncture accuracy of 12 animal experiments undergoing prostate puncture using MR-TRUS flexible registration technology from May 2022 to October 2023, and observation of intraoperative and 7-day postoperative complications. The study obtained MR-TRUS images and utilized image processing algorithms for registration to reduce image deformation and distortion. Then, precise positioning and operation are carried out through the robot system to execute the prostate biopsy program. The experimental results indicate that the advanced prostate biopsy robot system based on MR-TRUS image flexible registration technology has demonstrated good feasibility and safety in animal experiments. Image registration technology has successfully reduced image distortion and deformation, improving biopsy accuracy. The precise positioning and operation of robot systems play a crucial role in the biopsy process, reducing the occurrence of complications.

2.
J Cardiovasc Electrophysiol ; 32(5): 1281-1289, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33625757

RESUMEN

INTRODUCTION: We previously introduced the inverse solution guidance algorithm (ISGA) methodology using a Single Equivalent Moving Dipole model of cardiac electrical activity to localize both the exit site of a re-entrant circuit and the tip of a radiofrequency (RF) ablation catheter. The purpose of this study was to investigate the use of ISGA for ablation catheter guidance in an animal model. METHODS: Ventricular tachycardia (VT) was simulated by rapid ventricular pacing at a target site in eleven Yorkshire swine. The ablation target was established using three different techniques: a pacing lead placed into the ventricular wall at the mid-myocardial level (Type-1), an intracardiac mapping catheter (Type-2), and an RF ablation catheter placed at a random position on the endocardial surface (Type-3). In each experiment, one operator placed the catheter/pacing lead at the target location, while another used the ISGA system to manipulate the RF ablation catheter starting from a random ventricular location to locate the target. RESULTS: The average localization error of the RF ablation catheter tip was 0.31 ± 0.08 cm. After analyzing approximately 35 cardiac cycles of simulated VT, the ISGA system's accuracy in locating the target was 0.4 cm after four catheter movements in the Type-1 experiment, 0.48 cm after six movements in the Type-2 experiment, and 0.67 cm after seven movements in the Type-3 experiment. CONCLUSION: We demonstrated the feasibility of using the ISGA method to guide an ablation catheter to the origin of a VT focus by analyzing a few beats of body surface potentials without electro-anatomic mapping.


Asunto(s)
Ablación por Catéter , Taquicardia Ventricular , Algoritmos , Animales , Catéteres , Corazón , Porcinos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/cirugía
3.
J Interv Card Electrophysiol ; 58(3): 323-331, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31456103

RESUMEN

We have developed a system that could potentially be used to identify the site of origin of ventricular tachycardia (VT) and to guide a catheter to that site to deliver radio-frequency ablation therapy. This system employs the Inverse Solution Guidance Algorithm based upon Single Equivalent Moving Dipole (SEMD) localization method. The system was evaluated in in vivo swine experiments. Arrays consisting of 9 or 16 bipolar epicardial electrodes and an additional mid-myocardial pacing lead were sutured to each ventricle. Focal tachycardia was simulated by applying pacing pulses to each epicardial electrode at multiple pacing rates during breath hold at the end-expiration phase. Surface potentials were recorded from 64 surface electrodes and then analyzed using the SEMD method to localize the position of the pacing electrodes. We found a close correlation between the locations of the pacing electrodes as measured in computational and real spaces. The reproducibility error of the SEMD estimation of electrode location was 0.21 ± 0.07 cm. The vectors between every pair of bipolar electrodes were computed in computational and real spaces. At 120 bpm, the lengths of the vectors in the computational and real space had a 95% correlation. Computational space vectors were used in catheter guidance simulations which showed that this method could reduce the distance between the real space locations of the emulated catheter tip and the emulated arrhythmia origin site by approximately 72% with each movement. We have demonstrated the feasibility of using our system to guide a catheter to the site of the emulated VT origin.


Asunto(s)
Ablación por Catéter , Taquicardia Ventricular , Algoritmos , Animales , Mapeo del Potencial de Superficie Corporal , Catéteres , Humanos , Reproducibilidad de los Resultados , Porcinos , Taquicardia Ventricular/cirugía
4.
Robot Surg ; 4: 25-31, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28966928

RESUMEN

BACKGROUND: Present treatments for ventricular tachycardia have significant drawbacks. To ameliorate these drawbacks, it may be advantageous to employ an epicardial robotic walker that performs mapping and ablation with precise control of needle insertion depth. This paper examines the feasibility of such a system. METHODS: This paper describes techniques for epicardial mapping and depth-controlled ablation with the robotic walker. The mapping technique developed for the current form of the system uses a single equivalent moving dipole model combined with the navigation capability of the walker. The intervention technique provides saline-enhanced radio frequency ablation, with sensing of needle penetration depth. The mapping technique was demonstrated in an artificial heart model with a simulated arrhythmia focus, followed by preliminary testing in the porcine model in vivo. The ablation technique was demonstrated in an artificial tissue model, and then in chicken breast tissue ex vivo. RESULTS: The walker located targets to within 2 mm using the SEMDM technique. No epicardial damage was found subsequent to the porcine trial in vivo. Needle insertion for ablation was controlled to within 2 mm of the target depth. Lesion size was repeatable, with diameter varying consistently in proportion to volume of saline injected. CONCLUSIONS: The experiments demonstrated the general feasibility of the techniques for mapping and depth-controlled ablation with the robotic walker.

5.
Pacing Clin Electrophysiol ; 37(8): 1038-50, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24645803

RESUMEN

BACKGROUND: We have introduced a method to guide radiofrequency catheter ablation (RCA) procedures that estimates the location of a catheter tip used to pace the ventricles and the target site for ablation using the single equivalent moving dipole (SEMD). OBJECTIVE: To investigate the accuracy of this method in resolving epicardial and endocardial electrical sources. METHODS: Two electrode arrays, each of nine pacing electrodes at known distances from each other, sutured on the left- and right-ventricular (LV and RV) epicardial surfaces of swine, were used to pace the heart at multiple rates, while body surface potentials from 64 sites were recorded and used to estimate the SEMD location. A similar approach was followed for pacing from catheters in the LV and RV. RESULTS: The overall (RV & LV) error in estimating the interelectrode distance of adjacent epicardial electrodes was 0.38 ± 0.45 cm. The overall endocardial (RV & LV) interelectrode distance error, was 0.44 ± 0.26 cm. Heart rate did not significantly affect the error of the estimated SEMD location (P > 0.05). The guiding process error became progressively smaller as the SEMD approached an epicardial target site and close to the target, the overall absolute error was ∼ 0.28 cm. The estimated epicardial SEMD locations preserved their topology in image space with respect to their corresponding physical location of the epicardial electrodes. CONCLUSION: The proposed algorithm suggests one can efficiently and accurately resolve epicardial electrical sources without the need of an imaging modality. In addition, the error in resolving these sources is sufficient to guide RCA procedures.


Asunto(s)
Algoritmos , Fuentes de Energía Bioeléctrica , Ablación por Catéter/métodos , Animales , Fenómenos Electrofisiológicos , Porcinos
6.
IEEE J Biomed Health Inform ; 18(1): 222-30, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24403420

RESUMEN

Radio-frequency catheter ablation (RCA) is an established treatment for ventricular tachycardia (VT). A key feature of the RCA procedure is the need for a mapping approach that facilitates the identification of the target ablation site. In this study, we investigate the effect of the location of the reference potential and spatial anatomical constraints on the accuracy of an algorithm to identify the target site for ablation therapy of VT. This algorithm involves processing body surface potentials using the single equivalent moving dipole (SEMD) model embedded in an infinite homogeneous volume conductor to model cardiac electrical activity. We employed a swine animal model and an electrode array of nine electrodes that was sutured on the epicardial surface of the right ventricle. We identified two potential reference electrode locations: at an electrode most far away from the heart (R1) and at the average of all 64 body surface electrode potentials (R2). Also, we developed three spatial "constraining" schemes of the algorithm used to obtain the SEMD location: one that does not impose any constraint on the inverse solution (S1), one that constrains the solution into a volume that corresponds to the heart (S2), and one that constrains the solution into a volume that corresponds to the body surface (S3). We have found that R2S1 is the most accurate approach (p < 0.05 versus R1S1 at earliest activation time-EAT) for localizing epicardial electrical sources of known locations in vivo. Although the homogeneous volume conductor introduces systematic error in the estimated compared to the true dipole location, we have observed that the overall error of the estimated interelectrode distance compared to the true one was 0.4 ± 0.4 cm and 0.4 ± 0.1 cm for the R1S1 and R2S1 combinations, respectively, at the EAT (p = N.S.) and 1.0 ± 0.6 and 0.5 ± 0.4 cm, respectively, at the pacing spike time (PST, ). In conclusion, our algorithm to estimate the SEMD parameters from body surface potentials can potentially be a useful method to rapidly and accurately guide the catheter tip to the target site during a RCA procedure without the need for spatial anatomical information obtained by conventional imaging modalities.


Asunto(s)
Mapeo del Potencial de Superficie Corporal/métodos , Ablación por Catéter/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Animales , Mapeo del Potencial de Superficie Corporal/instrumentación , Ablación por Catéter/instrumentación , Electrodos , Corazón/fisiología , Modelos Cardiovasculares , Porcinos
7.
Pacing Clin Electrophysiol ; 36(7): 811-22, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23448231

RESUMEN

BACKGROUND: We developed and evaluated a novel system for guiding radiofrequency catheter ablation therapy of ventricular tachycardia. This guidance system employs an inverse solution guidance algorithm (ISGA) using a single equivalent moving dipole (SEMD) localization method. The method and system were evaluated in both a saline tank phantom model and in vivo animal (swine) experiments. METHODS: A catheter with two platinum electrodes spaced 3 mm apart was used as the dipole source in the phantom study. A 40-Hz sinusoidal signal was applied to the electrode pair. In the animal study, four to eight electrodes were sutured onto the right ventricle. These electrodes were connected to a stimulus generator delivering 1-ms duration pacing pulses. Signals were recorded from 64 electrodes, located either on the inner surface of the saline tank or on the body surface of the pig, and then processed by the ISGA to localize the physical or bioelectrical SEMD. RESULTS: In the phantom studies, the guidance algorithm was used to advance a catheter tip to the location of the source dipole. The distance from the final position of the catheter tip to the position of the target dipole was 2.22 ± 0.78 mm in real space and 1.38 ± 0.78 mm in image space (computational space). The ISGA successfully tracked the locations of electrodes sutured on the ventricular myocardium and the movement of an endocardial catheter placed in the animal's right ventricle. CONCLUSION: In conclusion, we successfully demonstrated the feasibility of using an SEMD inverse algorithm to guide a cardiac ablation catheter.


Asunto(s)
Algoritmos , Mapeo del Potencial de Superficie Corporal/métodos , Ablación por Catéter/métodos , Sistema de Conducción Cardíaco/fisiología , Sistema de Conducción Cardíaco/cirugía , Modelos Cardiovasculares , Cirugía Asistida por Computador/métodos , Animales , Mapeo del Potencial de Superficie Corporal/instrumentación , Simulación por Computador , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Cirugía Asistida por Computador/instrumentación , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA