Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Nanotechnology ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38710176

Electrochromic polymers (ECPs) have great application potential in flexible displays, and there is an increasing expectation of using green methods to form ECP films. Herein, we propose a modified microemulsion method to prepare Cyan/Magenta/Yellow (C/M/Y) water-dispersed electrochromic polymer nanoparticles systems. Three polymer films (WDECP-C/M/Y) maintain similar electrochemical properties compared to their corresponding organic solvent-based polymer films. It is intriguing that WDECP-C/M/Y exhibit better electrochromic properties in terms of higher cycling stability (97.24%, 95.05%, and 52.84%, respectively) and faster switching time (0.94 s, 1.09 s, and 1.34 s for coloring time, respectively) due to the introduction of nanoparticles. In addition, it can achieve various desired colors by blending the C/M/Y water-dispersed electrochromic polymer nanoparticles systems in different ratios. The calculated chromaticity coordinates of the blending polymer films show close values to the experimental observation, and the calculated ΔE*ab values range from 2.6 to 10.3, which may provide theoretical guidance for precisely color control. Finally, large-scale and patterned devices were assembled, which can achieve colored-to-colorless reversible electrochromism at a low driving voltage of 0 to 1.5 V. This work puts forward a universal and environmentally sustainable strategy to prepare water-dispersed electrochromic polymer nanoparticles systems, demonstrating their wide range of applications in display devices and electronic tags.

2.
Macromol Rapid Commun ; : e2400031, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38620002

The systematic study of two ionic porous organic polymers (iPOPs) based on viologens and their first applications in the electrochromic field are reported. The viologen-based iPOPs are synthesized by electrochemical polymerization with cyano groups, providing a simple and controllable method for iPOPs that solves the film preparation problems common to viologens. After the characterization of these iPOPs, a detailed study of their electrochromic properties is conducted. The iPOP films based on viologens structure exhibit excellent electrochromic properties. In addition, the resulting iPOP films show high sensitivity to electrolyte ions of different sizes in the redox process. Electrochemical and electrochromic data of the iPOPs explain this phenomenon in detail. These results demonstrate that iPOPs of this type are ideal candidates as electrochromic materials due to their inherent porous structures and ion-rich properties.

3.
Int J Biol Macromol ; 262(Pt 2): 130099, 2024 Mar.
Article En | MEDLINE | ID: mdl-38342255

The study aimed to assay the allergenicity of shrimp tropomyosin (TM) following covalent conjugation with quercetin (QR) and chlorogenic acid (CA). The structure of the TM-polyphenol covalent conjugates was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), fluorescence, differential scanning calorimetry (DSC), and Fourier Transform infrared spectroscopy (FTIR). Potential allergenicity was evaluated using in vitro and in vivo methods. The results showed that QR and CA induced structural changes in TM through aggregation. RBL-2H3 cell results showed that TM-QR and TM-CA covalent conjugates reduced the release of ß-hexosaminidase and histamine, respectively. In the mice model, TM-QR and TM-CA covalent conjugates reduced the level of IgE, IgG, IgG1, histamine, and mMCP-1 in sera. Furthermore, the allergenicity was reduced by suppressing Th2-related cytokines (IL-4, IL-5, IL-13) and promoting Th1-related cytokines (IFN-γ). These research findings demonstrate that the covalent binding of TM with QR and CA, modifies the allergenic epitopes of shrimp TM, thereby reducing its potential allergenicity. This approach holds practical applications in the production of low-allergenicity food within the food industry.


Allergens , Tropomyosin , Mice , Animals , Tropomyosin/chemistry , Allergens/chemistry , Chlorogenic Acid/chemistry , Quercetin , Histamine , Immunoglobulin E/metabolism , Cytokines
4.
ACS Appl Mater Interfaces ; 15(50): 58723-58733, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38055918

The integration of an electrochromic (EC), energy storage, and adaptive camouflage system into a multifunctional electronic device is highly desirable and yet challenging. In this work, two carbazole-based conjugated polymers were prepared to achieve a reversible color change from transparent to yellow, green, and blue-green by easy electrochemical polymerization. Due to its dendritic geometry, the conjugated polymer p3CBCB exhibits a loosely packed structure with a relatively higher specific surface area than pCBCB, as well as a relatively better ionic conductivity. The kinetic and galvanostatic charge-discharge (GCD) study reveals that p3CBCB has superior properties with larger optical contrast and volumetric capacitance. Moreover, EC supercapacitors (ECSCs) are constructed with p3CBCB as the EC layer and ZnO@PEDOT:PSS as the ion storage layer. The dual function of a ZnO interface layer on improvement in reflectivity contrast (ΔR% > 35.1%) and cycling stability (over 40,000 cycles) using ZnO as a reflective and protective layer is demonstrated in an ion storage layer. Additionally, patterned prototype devices based on the design of double-sided ITO glass were successfully assembled, which can simulate conditions of various natural environments including forests, wilderness, and deserts. This study provides new ideas not only for the preparation of conjugated polymers that can simultaneously realize reversible transparent-yellow-green conversion but also for the achievement of high coloration efficiency, high reflectivity contrast, and good stability of ECSCs for adaptive camouflage.

5.
Bioelectromagnetics ; 44(7-8): 181-191, 2023.
Article En | MEDLINE | ID: mdl-37908196

Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna-a metal ring wrapped around the damaged nerve-powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.


Neurons , Sciatic Nerve , Rats , Animals , Humans , Electrodes , Sciatic Nerve/physiology , Electric Stimulation , Magnets
6.
ACS Appl Mater Interfaces ; 15(46): 53984-53995, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37934922

This work presents a new strategy to achieve a truly black electrochromic film and develop available intelligent eye-protection filters with "day mode" and "night mode", promising to minimize the harmful effects of light on eyes. The soluble red-to-transparent electrochromic polymer P1 was constructed using quinacridone as the basic unit and introduced dual-donor proDOT and DTC units with similar electron-donating capabilities. The beneficial broader absorption associated with the dual-donor in P1 results in ideal spectrum complementarity with P2 (cyan-to-transparent) in the visible region (380-780 nm). In addition to complementary colors, both polymers exhibit good compatibility with respect to electrochemical and electrochromic properties. Therefore, a P1/P2 film with a mass ratio of 1:1.5 for blending is preferred to obtain truly black color with fast switching time and good cyclic stability. Furthermore, an electrochromic device for intelligent eye-protection filters was designed and assembled with the P1/P2 film as the electrochromic layer and P3 featuring a yellow (antiblue ray)-to-dark gray color change as the ion storage layer. The assembled prototype electrochromic device demonstrated promising applications in intelligent day-night optical adjustment for eye-protection filters.

7.
Food Sci Biotechnol ; 32(13): 1861-1871, 2023 Nov.
Article En | MEDLINE | ID: mdl-37781058

Litchi polyphenols have very specific biological activities. Nevertheless, the low and inconsistent oral bioavailability and instability hinder the further application of litchi polyphenols in food systems. This work prepared litchi polyphenols loaded chitosan nanoparticles (LP-CSNPs) by ionic gelation method to enhance the encapsulation on the properties of litchi polyphenols. The optimum conditions of formation via single factors and the Box-Behnken design were chitosan (CS) concentration 1.065 mg/mL, sodium tripolyphosphate (TPP) concentration 0.975 mg/mL, and the mass ratios of polyphenols and CS 1:1 with encapsulation efficiency (EE%) of 45.53%. LP-CSNPs presented the nanosized range of particle size (mean 170 nm), excellent polydispersity index (PDI) (0.156 ± 0.025), and zeta potential values (+ 35.44 ± 0.59). The in vitro release in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8) during 100 h was 58.34% and 81.68%, respectively. LP-CSNPs could effectively improve the storage stability and had great antibacterial activity compared with unencapsulated litchi polyphenols.

8.
Front Oncol ; 13: 1222853, 2023.
Article En | MEDLINE | ID: mdl-37538113

Objective: This study aimed to investigate the effectiveness of tumor markers and contrast-enhanced computed tomography (CE-CT) in differentiating gastric hepatoid adenocarcinoma (GHA) from gastric adenocarcinoma (GA). Methods: This retrospective study included 160 patients (44 with GHA vs. 116 with GA) who underwent preoperative CE-CT. Preoperative serum concentrations of tumor biomarkers and CT imaging features were analyzed, including alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 125 (CA125), tumor location, growth pattern, size, enhancement pattern, cystic changes, and mass contrast enhancement. Multivariate logistic regression analyses were performed to evaluate useful tumor markers and CT imaging features for differentiating GHA from GA. Results: When compared to GA, GHA showed a higher serum AFP [13.27 ng/ml (5.2-340.1) vs. 2.7 ng/ml (2.2-3.98), P <0.001] and CEA levels [4.07 ng/ml (2.73-12.53) vs. 2.42 ng/ml (1.38-4.31), P <0.001]. CT imaging showed GHA with a higher frequency of tumor location in the gastric antrum (P <0.001). GHA had significantly lower attenuation values at the portal venous phase [PCA, (82.34 HU ± 8.46 vs. 91.02 HU ± 10.62, P <0.001)] and delayed phase [DCA, (72.89 HU ± 8.83 vs. 78.27 HU ± 9.51, P <0.001)] when compared with GA. Multivariate logistic regression analyses revealed that tumor location, PCA, and serum AFP level were independent predictors of differentiation between GHA and GA. The combination of these three predictors performed well in discriminating GHA from GA, with an AUC of 0.903, a sensitivity of 86.36%, and a specificity of 81.90%. Conclusions: Integrated evaluation of tumor markers and CT features, including tumor location, PCA, and serum AFP, allowed for more accurate differentiation of GHA from GA.

9.
Pestic Biochem Physiol ; 194: 105489, 2023 Aug.
Article En | MEDLINE | ID: mdl-37532351

As one of the major threats to global food security, Spodoptera frugiperda (S. frugiperda) is highly gaining consideration due to its severe damage. Matrine is a widely and effectively used botanical insecticide in controlling S.frugiperda but lacks a rapidly available effect. To further improved the insecticidal activity of matrine based on combination principles, this work synthesized five new pyrazole matrine derivatives (PMDs) using Michael addition and investigated insecticidal activity against 2nd instar larvae of S. frugiperda(in vivo) and its isolated cell(in vitro). Our result demonstrated that PMDs show higher pesticidal activity than that matrine in both in vitro and in vivo assays. The most toxic derivatives in vitro and in vivo are PMD-3 and PMD-1, with IC50 of 2.49 mM and LC50 of 22.76 mg/L respectively. This research also investigates the anti-proliferation mechanism of PMDs based on isolated cells. PMDs decrease mitochondria membrane potential, arrested cell cycle at the G2/M phase, and upregulated Caspase 3, Caspase 9, and Apaf-1 to induce Caspase-dependent apoptosis. For Caspase-independent apoptosis, AIF and Endo G were found to be upregulated. Besides, pro-apoptotic factors like p53, IBM-1, and anti-apoptotic factors like IAP were upregulated. Moreover, we supposed that there was a linkage between lysosomes and PMD-induced apoptosis according to increased apoptosis rate, activated lysosomes, and upregulated Cathepsin B. This research provides new ideas for the synthesis of matrine derivatives and further demonstrated the anti-proliferation mechanism of PMDs.


Insecticides , Animals , Spodoptera , Insecticides/pharmacology , Matrines , Apoptosis , Pyrazoles/pharmacology
10.
Small ; 19(45): e2303359, 2023 Nov.
Article En | MEDLINE | ID: mdl-37415549

This work presents a new strategy to achieve highly stable electrochromic devices and bilayer film construction. A novel solution-processable electrochromic polymer P1-Boc with quinacridone as the conjugated backbone and t-Boc as N-substituted non-conjugated solubilizing groups is designed. Thermal annealing of P1-Boc film results in the cleavage of t-Boc groups and the formation of N─H⋯O═C hydrogen-bonding crosslinked network, which changes its intrinsic solubility characteristics into a solvent-resistant P1 film. This film retains the electrochemical behavior and spectroelectrochemistry properties of the original P1-Boc film. Intriguingly, the electrochromic device based on the P1 film exhibits an ultrafast switching time (0.56/0.80 s at 523 nm) and robust electrochromic stability (retaining 88.4% of the initial optical contrast after 100 000 cycles). The observed cycle lifetime is one of the highest reported for all-organic electrochromic devices. In addition, a black-transparent bilayer electrochromic film P1/P2 is developed in which the use of the solvent-resistant P1 film as the bottom layer avoids interface erosion of the solution-processable polymer in a multilayer stacking.

11.
Opt Express ; 31(12): 19804-19817, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37381388

Self-driven photodetectors, which can detect optical signals without external voltage bias, are highly attractive in the field of low-power wearable electronics and internet of things. However, currently reported self-driven photodetectors based on van der Waals heterojunctions (vdWHs) are generally limited by low responsivity due to poor light absorption and insufficient photogain. Here, we report p-Te/n-CdSe vdWHs utilizing non-layered CdSe nanobelts as efficient light absorption layer and high mobility Te as ultrafast hole transporting layer. Benefiting from strong interlayer coupling, the Te/CdSe vdWHs exhibit stable and excellent self-powered characteristics, including ultrahigh responsivity of 0.94 A W-1, remarkable detectivity of 8.36 × 1012 Jones at optical power density of 1.18 mW cm-2 under illumination of 405 nm laser, fast response speed of 24 µs, large light on/off ratio exceeding 105, as well as broadband photoresponse (405-1064 nm), which surpass most of the reported vdWHs photodetectors. In addition, the devices display superior photovoltaic characteristics under 532 nm illumination, such as large Voc of 0.55 V, and ultrahigh Isc of 2.73 µA. These results demonstrate the construction of 2D/non-layered semiconductor vdWHs with strong interlayer coupling is a promising strategy for high-performance and low-power consumption devices.

12.
Digit Health ; 9: 20552076231179007, 2023.
Article En | MEDLINE | ID: mdl-37312938

Background: Diagnosis of pancreatic ductal adenocarcinoma (PDAC) is difficult due to the lack of specific symptoms and screening methods. Only less than 10% of PDAC patients are candidates for surgery at the time of diagnosis. Thus, there is a great global unmet need for valuable biomarkers that could improve the opportunity to detect PDAC at the resectable stage. This study aimed to develop a potential biomarker model for the detection of resectable PDAC by tissue and serum metabolomics. Methods: Ultra-high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS) was performed for metabolome quantification in 98 serum samples (49 PDAC patients and 49 healthy controls (HCs)) and 20 pairs of matched pancreatic cancer tissues (PCTs) and adjacent noncancerous tissues (ANTs) from PDAC patients. Univariate and multivariate analyses were used to profile the differential metabolites between PDAC and HC. Results: A total of 12 differential metabolites were present in both serum and tissue samples of PDAC. Among them, a total of eight differential metabolites showed the same expressional levels, including four upregulated and four downregulated metabolites. Finally, a panel of three metabolites including 16-hydroxypalmitic acid, phenylalanine, and norleucine was constructed by logistic regression analysis. Notably, the panel was capable of distinguishing resectable PDAC from HC with an AUC value of 0.942. Additionally, a multimarker model based on the 3-metabolites-based panel and CA19-9 showed a better performance than the metabolites panel or CA19-9 alone (AUC: 0.968 vs. 0.942, 0.850). Conclusions: Taken together, the resectable early-stage PDAC has unique metabolic features in serum and tissue samples. The defined panel of three metabolites has the potential value for early screening of PDAC at the resectable stage.

13.
J Food Prot ; 86(8): 100121, 2023 08.
Article En | MEDLINE | ID: mdl-37355008

Antioxidants are widely used to prevent oxidative degradation of food-contact plastics materials. However, when plastic products come into contact with food, antioxidants may contaminate food. Herein, twenty-three kinds of possible antioxidants were monitored in 257 products of seven polymers. The migration of antioxidants into the food simulants at different temperatures and times was detected by using HPLC-MS/MS. Risk assessment was performed based on the EU, U.S. FDA methods and Monte Carlo simulation. The antioxidants migrated mainly to fatty food simulant, with the highest concentration and occurrence frequency of Irgafos 168, followed byIrganox 1010, Irganox 1076, and Antioxidant LTDP in polyethylene terephthalate, polyvinyl chloride, polypropylene, polyethylene. No antioxidants were detected in polystyrene, polycarbonate, and polyvinylidene chloride. Additionally, antioxidants exhibited the highest detection rate of 0.81 in polyethylene. Risk assessment demonstrated that the antioxidants have no obvious health risk to the exposed population. However, the risk of polypropylene was relatively high compared to other polymers.


Antioxidants , Plastics , Antioxidants/analysis , Polypropylenes , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Food Packaging , Polymers , Polyethylene , Food Contamination/analysis
14.
Natl Sci Rev ; 10(6): nwad069, 2023 Jun.
Article En | MEDLINE | ID: mdl-37181085

With the aid of the newly developed 'Sunway' heterogeneous-architecture supercomputer, which has world-leading HPC (high-performance computer) capability, a series of high-resolution coupled Earth system models (SW-HRESMs) with up to 5 km of atmosphere and 3 km of ocean have been developed. These models can meet the needs of multiscale interaction studies with different computational costs. Here we describe the progress of SW-HRESMs development, with an overview of the major advancements made by the international Earth science community in HR-ESMs. We also show the preliminary results of SW-HRESMs with regard to capturing major weather-climate extremes in the atmosphere and ocean, stressing the importance of permitted clouds and ocean submesoscale eddies in modeling tropical cyclones and eddy-mean flow interactions, and paving the way for further model development to resolve finer scales with even higher resolution and more realistic physics. Finally, in addition to increasing model resolution, the development procedure for a non-hydrostatic cloud and ocean submesoscale resolved ESM is discussed, laying out the major scientific directions of such a huge modeling advancement.

15.
Sci Total Environ ; 878: 162977, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-36963689

Microplastics (MPs) entering the environment undergo complex weathering (aging) processes, however, the impacts of aged MPs on estuarine nitrogen cycling and microbial ecosystems remain largely unknown. In this study, a 50 days microcosm experiment was conducted to investigate the response of sedimentary nitrogen (N) transformation processes, N2O emission and microbial communities to virgin and aged MPs (PE and PS) exposure. We found that aged MPs influenced sediment nitrogen turnover more rapidly and profoundly than virgin MPs and showed type and dose-response effect. During the first 10 days, higher concentration (3 % by weight of sediment) aged MPs (both PS and PE) treatments significantly promoted denitrification (ANOVA, P < 0.05), while virgin MPs treatments had weak effect on denitrification, compared with the control (P > 0.05). Moreover, higher concentration aged PS-MPs remarkably enhanced N2O emission on the 10th day, while N2O was consumed in the control. After 50 days incubation, there was an overall increase in nirK gene abundance exposed to MPs, and nosZ gene copies in aged PS treatments were around twice that in the control based on qPCR (P < 0.05). The function prediction also showed significant elevation of relative abundance of denitrification and DNRA relevant genes in bacterial community. In addition, aged PS treatment (3 %) recruited specific bacterial and archaeal assemblies, with Sedimenticolaceae, Lentimicrobiaceae, SCGC_AAA011-D5, SG8-5, Lokiarchaeia, and Odinarchaeia selectively enriched in the treatment. Our study highlighted that virgin and aged MPs had different impact on sediment nitrogen cycling, and the ecological risks of aged MPs should be concerned since all MPs eventually get weathered when they enter the environment.


Ecosystem , Microplastics , Nitrogen Cycle , Soil Microbiology , Water Pollutants, Chemical , Bacteria , Denitrification , Estuaries , Microplastics/toxicity , Nitrogen/analysis , Nitrous Oxide/analysis , Plastics , Soil , Nitrogen Cycle/drug effects , Water Pollutants, Chemical/toxicity
16.
Int J Pharm ; 639: 122823, 2023 May 25.
Article En | MEDLINE | ID: mdl-36921741

Treatment of stroke remains difficult due to the unsatisfactory or unlocalized delivery of small molecule- and cell-based therapeutics in injured brain tissues. This is particularly the case for costunolide (Cos), which is highly neuroprotective and anti-inflammatory but finds great difficulty in reaching the brain. Here, we present that Cos induces the differentiation of bone marrow mesenchymal stem cells (bMSCs) into glia-like cells (C-bMSCs) capable of secreting neurotrophic factors and homing to injured brain tissues. By taking advantage of the homing effect, Cos and C-bMSCs were simultaneously funneled into the damaged brain by: (i) preparing Cos micelles (Cos-M) through entrapping Cos into the amphiphilic copolymer mPEG-PLGA [poly(ethylene oxide) monomethyl ether-poly(lactide-co-glycolide)], and (ii) incorporating Cos-M into C-bMSCs to give an intravenously injectable cell-like composite termed Cos@C-bMSCs, which displayed the inter-synergized neuroprotective efficacy in the cerebral ischemia reperfusion (CIR) injured rats. As desired, in the injured brain area, Cos@C-bMSCs simultaneously released Cos and C-bMSCs (glia-like cells) to repair the injured brain and to secret neurotrophic factors such as nerve growth factor (NGF). In view of the availability and reliability of autologous MSCs, the proof-of-concept design, development, and in vivo efficacy of Cos@C-bMSCs signify a movement in our management of brain damages.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Rats , Animals , Rats, Sprague-Dawley , Neuroprotection , Reproducibility of Results , Bone Marrow Cells
17.
Food Addit Contam Part B Surveill ; 16(2): 120-129, 2023 Jun.
Article En | MEDLINE | ID: mdl-36843386

N-nitrosamines are human carcinogens commonly present in dried aquatic products. A method of gas chromatography - mass spectrometry combined with steam distillation was developed for the determination of 9 N-nitrosamines in dried aquatic products in Qingdao, China, with which 300 samples of fish, squid, shrimp and sea cucumber collected from Qingdao were analysed. A health risk assessment was conducted based on determined levels of N-nitrosamines by using estimated daily intake and slope factors. Results showed that fish products was the category with the highest content of N-nitrosamines, whereas squid and shrimp products were the categories with the highest frequency of presence of N-nitrosamines. The average estimated cancer risk of N-nitrosamines in dried aquatic products in Qingdao ranged from 3.57 × 10-8 to 3.53 × 10-5. Nitrosodimethylamine, N-Nitrosodiethylamine and N-Nitrosodibutylamine could be considered to pose a potential cancer risk to residents in Qingdao.


Neoplasms , Nitrosamines , Animals , Humans , Food Contamination/analysis , Nitrosamines/analysis , Dimethylnitrosamine/analysis , Risk Assessment
18.
Front Microbiol ; 14: 1098818, 2023.
Article En | MEDLINE | ID: mdl-36778862

Enterotoxigenic Escherichia coli (ETEC) is a common pathogen of swine colibacillosis, which can causing a variety of diseases initiate serious economic losses to the animal husbandry industry. The traditional Chinese medicine Changyanning (CYN) often used for diarrhea caused by the accumulation of damp heat in the gastrointestinal tract, has anti-bacterial, anti-inflammatory and anti-oxidation effects. This study investigated the effect of CYN on gut microbiota and metabolism in mice infected with ETEC K88. A total of 60 Kunming mices were divided into Control group, ETEC K88 group, CYN.L group (2.5 g/kg), CYN.M group (5 g/kg), CYN.H group (10 g/kg) and BTW group (10 g/kg), determined clinical symptoms, intestinal morphology, inflammatory responses, gut microbiota as well as serum metabolites. CYN administration elevated ETEC K88-induced body weight loss, ameliorated duodenum, ilem, colon pathological injury, and reduced the increase of spleen index caused by ETEC. CYN also reduced the levels of pro-inflammatory cytokines (IL-6, TNE-α) in the serum. 16s rRNA gene sequencing results showed that CYN increased the abundance of beneficial bacteria Lactobacillus but decreased the abundance of pathogenic bacteria Escherichia in the feces of mice. Moreover, CYN participates in amino acid biosynthesis and metabolism in the process of serum metabolism to regulates ameliorate intestinal injury induced by ETEC K88. In conclusion, CYN regulates gut microbiota and metabolism to ameliorate intestinal injury induced by ETEC K88.

19.
Dev Comp Immunol ; 142: 104668, 2023 05.
Article En | MEDLINE | ID: mdl-36774972

Argonaute (Ago) is the core component of RNA-induced silencing complex to play a crucial role in the antiviral immunity, which always cooperates with Dicer in RNA interference (RNAi) to silence the target genes. In the present study, an Ago homologue (CgAgo2) was identified in the Pacific oyster Crassostrea gigas. There were four classical functional domains in the predicted CgAgo2 protein, including an N-terminal domain, a PAZ domain, a Mid domain, and a PIWI domain. The deduced amino acid sequence of CgAgo2 shared 63.52%-84.27% identity with other Agos. Transcriptome analysis showed that CgAgo2 was highly expressed in embryonic period and gradually decreased from blastula to gastrula. The transcripts of CgAgo2 were detectable in all the examined tissues of adult oysters, with the highest expression in haemocytes (36.61-fold of that in adductor muscle, p < 0.001). The expression level of CgAgo2 mRNA in haemocytes increased significantly at 12 h after poly (I:C) and dsRNA stimulation, which were 2.71-fold (p < 0.05) and 58.00-fold (p < 0.001) of that in the control group respectively. Immunocytochemistry assay revealed that CgAgo2 proteins were mainly distributed in the cytoplasm and nucleus of haemocytes. The interaction between the recombinant CgAgo2 protein (rCgAgo2) and cleavage protein rCgDicer was observed in vitro by BLI and pull-down assays. These results indicated that CgAgo2 participated in the antiviral immunity of oyster by functioning as a component of RNA-induced silencing complex in RNAi.


Crassostrea , Animals , Immunity, Innate/genetics , Gene Expression Regulation , Antiviral Agents/metabolism , RNA Interference , Poly I-C/pharmacology , Recombinant Proteins/genetics , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism , Hemocytes
20.
ACS Appl Mater Interfaces ; 15(10): 13730-13739, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36854655

The composite or hybrid of organic and inorganic materials is one of the common ways to improve the properties of photoelectric functional materials. Perylene bisimide (PBI) derivatives, as large π-conjugated organic small molecules, are a class of photoelectric functional materials with excellent performance. However, there were few reports on PBIs in the electrochromic field due to the difficulty of film-forming caused by their generally poor solubility. Here, water-soluble PBI derivatives (PDI-COOH and PCl-COOH) were synthesized. The hybrid films (ZnO@PDI-COOH/PCl-COOH) formed by the coordination bond and π-π stacking were prepared via a simple solution immersion method. Fourier transform infrared spectrometry and X-ray diffraction as well as scanning electron microscopy, and energy-dispersive spectrometry results further confirmed the formation of hybrid films. At the same time, electrochemical and spectroelectrochemical analyses revealed that the films have reversible redox activity and cathodic electrochromic properties, which can change from orange-red to purple. The ZnO@PDI-COOH hybrid film formed by coordination bonds exhibits fast switching times (1.7 s colored time and 2.6 s bleached time), good stability (retain 92.41% contrast after 2400 cycles), a low driving voltage (-0.6-0 V), and a high coloration efficiency (276.14 cm2/C). The corresponding electrochromic devices also have good electrochromic properties. On this basis, a large-area (100 mm × 100 mm) electrochromic display device with fine patterning was fabricated by using the hybrid film, and the device shows excellent reversible electrochromic performance. This idea of constructing organic-inorganic hybrid materials with coordination bonds provides an effective, energy-saving, and green method, which is expected to promote the large-scale and fine production of electrochromic materials.

...