Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Healthc Eng ; 2023: 5287043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726772

RESUMEN

Sleep apnea syndrome (SAS) is the most common sleep disorder which affects human life and health. Many researchers use deep learning methods to automatically learn the features of physiological signals. However, these methods ignore the different effects of multichannel features from various physiological signals. To solve this problem, we propose a multichannel fusion network (MCFN), which learns the multilevel features through a convolution neural network on different respiratory signals and then reconstructs the relationship between feature channels with an attention mechanism. MCFN effectively fuses the multichannel features to improve the SAS detection performance. We conducted experiments on the Multi-Ethnic Study of Atherosclerosis (MESA) dataset, consisting of 2056 subjects. The experiment results show that our proposed network achieves an overall accuracy of 87.3%, which is better than other SAS detection methods and can better assist sleep experts in diagnosing sleep disorders.


Asunto(s)
Aterosclerosis , Síndromes de la Apnea del Sueño , Humanos , Síndromes de la Apnea del Sueño/diagnóstico , Redes Neurales de la Computación , Sueño , Frecuencia Respiratoria
2.
Comput Intell Neurosci ; 2022: 6104736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188714

RESUMEN

Sleep stage classification is essential in diagnosing and treating sleep disorders. Many deep learning models have been proposed to classify sleep stages by automatic learning features and temporal context information. These temporal context features come from the intra-epoch temporal features, which represent the overall morphology of an epoch, and temporal features of adjacent epochs and long epochs, which represent the influence between epochs. However, most existing methods do not fully use the complementarity of the three-level temporal features, resulting in incomplete extracted temporal features. To solve this problem, we propose a multilevel temporal context network (MLTCN) to learn the temporal features from intra-epoch, adjacent epochs, and long epochs, which utilizes the complete temporal features to improve classification accuracy. We evaluate the performance of the proposed model on the Sleep-EDF datasets published in 2013 and 2018. The experimental results show that our MLTCN can achieve an overall accuracy of 84.2% and a kappa coefficient of 0.78 on the Sleep-EDF-2013 dataset. On the larger Sleep-EDF-2018 dataset, the overall accuracy is 81.0%, and a kappa coefficient is 0.74. Our model can better assist sleep experts in diagnosing sleep disorders.


Asunto(s)
Electroencefalografía , Trastornos del Sueño-Vigilia , Humanos , Polisomnografía , Sueño , Fases del Sueño
3.
PeerJ ; 8: e9371, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714656

RESUMEN

The life cycle of intracellular RNA mainly involves transcriptional production, splicing maturation and degradation processes. Their dynamic changes are termed as RNA life cycle dynamics (RLCD). It is still challenging for the accurate and robust identification of RLCD under unknow the functional form of RLCD. By using the pulse model, we developed an R package named pulseTD to identify RLCD by integrating 4sU-seq and RNA-seq data, and it provides flexible functions to capture continuous changes in RCLD rates. More importantly, it also can predict the trend of RNA transcription and expression changes in future time points. The pulseTD shows better accuracy and robustness than some other methods, and it is available on the GitHub repository (https://github.com/bioWzz/pulseTD_0.2.0).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...