Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Front Immunol ; 14: 1259237, 2023.
Article En | MEDLINE | ID: mdl-37920471

Introduction: Glucose Regulated Proteins/Binding protein (GRP78/Bip), a representative molecular chaperone, effectively influences and actively participates in the replication processes of many viruses. Little is known, however, about the functional involvement of GRP78 in the replication of Newcastle disease virus (NDV) and the underlying mechanisms. Methods: The method of this study are to establish protein interactomes between host cell proteins and the NDV Hemagglutinin-neuraminidase (HN) protein, and to systematically investigate the regulatory role of the GRP78-HN protein interaction during the NDV replication cycle. Results: Our study revealed that GRP78 is upregulated during NDV infection, and its direct interaction with HN is mediated by the N-terminal 326 amino acid region. Knockdown of GRP78 by small interfering RNAs (siRNAs) significantly suppressed NDV infection and replication. Conversely, overexpression of GRP78 resulted in a significant increase in NDV replication, demonstrating its role as a positive regulator in the NDV replication cycle. We further showed that the direct interaction between GRP78 and HN protein enhanced the attachment of NDV to cells, and masking of GRP78 expressed on the cell surface with specific polyclonal antibodies (pAbs) inhibited NDV attachment and replication. Discussion: These findings highlight the essential role of GRP78 in the adsorption stage during the NDV infection cycle, and, importantly, identify the critical domain required for GRP78-HN interaction, providing novel insights into the molecular mechanisms involved in NDV replication and infection.


Endoplasmic Reticulum Chaperone BiP , Newcastle disease virus , Animals , Neuraminidase/metabolism , Hemagglutinins , Virus Attachment , HN Protein/genetics , HN Protein/metabolism , HN Protein/pharmacology , Viral Proteins/pharmacology
2.
Vaccines (Basel) ; 11(6)2023 May 31.
Article En | MEDLINE | ID: mdl-37376440

Newcastle disease (ND) and infectious bursal disease (IBD) are two key infectious diseases that significantly threaten the health of the poultry industry. Although existing vaccinations can effectively prevent and treat these two diseases through multiple immunizations, frequent immunization stresses significantly impact chicken growth. In this study, three recombinant adenoviruses, rAd5-F expressing the NDV (genotype VII) F protein, rAd5-VP2 expressing the IBDV VP2 protein, and rAd5-VP2-F2A-F co-expressing F and VP2 proteins, were constructed using the AdEasy system. The F and VP2 genes of the recombinant adenoviruses could be transcribed and expressed normally in HEK293A cells as verified by RT-PCR and Western blot. The three recombinant viruses were shown to have similar growth kinetics as rAd5-EGFP. Compared with the PBS and rAd5-EGFP groups, SPF chickens immunized with recombinant adenoviruses produced higher antibody levels, more significant lymphocyte proliferation, and significantly higher CD4+/CD3+ and CD8+/CD3+ cells in peripheral blood. The survival rate of SPF chickens immunized with rAd5-F and rAd5-VP2-F2A-F after the challenge with DHN3 was 100%, and 86% of SPF chickens showed no viral shedding at 7 dpc. The survival rate of SPF chickens immunized with rAd5-VP2 and rAd5-VP2-F2A-F after the challenge with BC6/85 was 86%. rAd5-VP2 and rAd5-VP2-F2A-F significantly inhibited bursal atrophy and pathological changes compared to the rAd5-EGFP and PBS groups. This study provides evidence that these recombinant adenoviruses have the potential to be developed into safe and effective vaccine candidates for the prevention and control of ND and IBD.

...