Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
PLoS One ; 17(8): e0272428, 2022.
Article En | MEDLINE | ID: mdl-36006933

Aanti-epileptic drugs have been used for treating epilepsy for decades, meanwhile, more than one hundred genes have been identified to be associated with risk of epilepsy; however, the interaction mechanism between anti-epileptic drugs and risk genes of epilepsy was still not clearly understood. In this study, we systematically explored the interaction of epilepsy risk genes and anti-epileptic drug targets through a network-based approach. Our results revealed that anti-epileptic drug targets were significantly over-represented in risk genes of epilepsy with 17 overlapping genes and P-value = 2.2 ×10 -16. We identified a significantly localized PPI network with 55 epileptic risk genes and 94 anti-epileptic drug target genes, and network overlap analysis showed significant interactome overlap between risk genes and drug targets with P-value = 0.04. Besides, genes from PPI network were significantly enriched in the co-expression network of epilepsy with 22 enriched genes and P-value = 1.3 ×10 -15; meanwhile, cell type enrichment analysis indicated genes in this network were significantly enriched in 4 brain cell types (Interneuron, Medium Spiny Neuron, CA1 pyramidal Neuron, and Somatosensory pyramidal Neuron). These results provide evidence for significant interactions between epilepsy risk genes and anti-epileptic drug targets from the perspective of network biology.


Epilepsy , Brain , Epilepsy/drug therapy , Epilepsy/genetics , Humans , Interneurons , Neurons , Pyramidal Cells
2.
Bioprocess Biosyst Eng ; 34(9): 1163-8, 2011 Nov.
Article En | MEDLINE | ID: mdl-21744121

Thermomyces lanuginosus lipase (Lipozyme TLIM)-catalyzed esterification of L-ascorbic acid was studied. It was suggested that Lipozyme TLIM was a suitable biocatalyst for enzymatic esterification of L-ascorbic acid. Three solvents were investigated for the reaction, and acetone was found to be a suitable reaction medium. Furthermore, it was found that water activity could notably affect the conversion. Moreover, pH memory of Lipozyme TLIM lipase for catalyzing L-ascorbic acid esterification in acetone was observed and the effect of pH on the reaction was estimated. In addition, the influences of other parameters such as substrate mole ratio, enzyme loading, and reaction temperature and reusability of lipase on esterification of L-ascorbic acid were also analyzed systematically and quantitatively. Kinetic characterization of Lipozyme TLIM showed that K(m,a) and V(max) were 80.085 mM and 0.747 mM min(-1), respectively. As a result, Lipozyme TLIM-catalyzed esterification of L: -ascorbic acid gave a maximum conversion of 99%.


Ascomycota/enzymology , Ascorbic Acid/analogs & derivatives , Lipase/chemistry , Acetone/chemistry , Ascorbic Acid/chemistry , Biotransformation , Catalysis , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Solvents/chemistry , Temperature , Time Factors , Water/chemistry
...