Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
PNAS Nexus ; 3(1): pgae010, 2024 Jan.
Article En | MEDLINE | ID: mdl-38250515

As information about the world is conveyed from the sensory periphery to central neural circuits, it mixes with complex ongoing cortical activity. How do neural populations keep track of sensory signals, separating them from noisy ongoing activity? Here, we show that sensory signals are encoded more reliably in certain low-dimensional subspaces. These coding subspaces are defined by correlations between neural activity in the primary sensory cortex and upstream sensory brain regions; the most correlated dimensions were best for decoding. We analytically show that these correlation-based coding subspaces improve, reaching optimal limits (without an ideal observer), as noise correlations between cortex and upstream regions are reduced. We show that this principle generalizes across diverse sensory stimuli in the olfactory system and the visual system of awake mice. Our results demonstrate an algorithm the cortex may use to multiplex different functions, processing sensory input in low-dimensional subspaces separate from other ongoing functions.

2.
J Neurophysiol ; 130(5): 1226-1242, 2023 11 01.
Article En | MEDLINE | ID: mdl-37791383

Odor perception is the impetus for important animal behaviors with two predominate modes of processing: odors pass through the front of the nose (orthonasal) while inhaling and sniffing, or through the rear (retronasal) during exhalation and while eating. Despite the importance of olfaction for an animal's well-being and that ortho and retro naturally occur, it is unknown how the modality (ortho vs. retro) is even transmitted to cortical brain regions, which could significantly affect how odors are processed and perceived. Using multielectrode array recordings in tracheotomized anesthetized rats, which decouples ortho-retro modality from breathing, we show that mitral cells in rat olfactory bulb can reliably and directly transmit orthonasal versus retronasal modality with ethyl butyrate, a common food odor. Drug manipulations affecting synaptic inhibition via GABAA lead to worse decoding of ortho versus retro, independent of whether overall inhibition increases or decreases, suggesting that the olfactory bulb circuit may naturally favor encoding this important aspect of odors. Detailed data analysis paired with a firing rate model that captures population trends in spiking statistics shows how this circuit can encode odor modality. We have not only demonstrated that ortho/retro information is encoded to downstream brain regions but also used modeling to demonstrate a plausible mechanism for this encoding; due to synaptic adaptation, it is the slower time course of the retronasal stimulation that causes retronasal responses to be stronger and less sensitive to inhibitory drug manipulations than orthonasal responses.NEW & NOTEWORTHY Whether ortho (sniffing odors) versus retro (exhalation and eating) is encoded from the olfactory bulb to other brain areas is not completely known. Using multielectrode array recordings in anesthetized rats, we show that the olfactory bulb transmits this information downstream via spikes. Altering inhibition degrades ortho/retro information on average. We use theory and computation to explain our results, which should have implications on cortical processing considering that only food odors occur retronasally.


Odorants , Olfactory Perception , Rats , Animals , Olfactory Bulb/physiology , Smell/physiology , Nose/physiology , Olfactory Perception/physiology
3.
Bull Math Biol ; 84(10): 107, 2022 08 25.
Article En | MEDLINE | ID: mdl-36008641

The spiking activity of mitral cells (MC) in the olfactory bulb is a key attribute in olfactory sensory information processing to downstream cortical areas. A more detailed understanding of the modulation of MC spike statistics could shed light on mechanistic studies of olfactory bulb circuits and olfactory coding. We study the spike response of a recently developed single-compartment biophysical MC model containing seven known ionic currents and calcium dynamics subject to constant current input with background white noise. We observe rich spiking dynamics even with constant current input, including multimodal peaks in the interspike interval distribution (ISI). Although weak-to-moderate background noise for a fixed current input does not change the firing rate much, the spike dynamics can change dramatically, exhibiting non-monotonic spike variability not commonly observed in standard neuron models. We explain these dynamics with a phenomenological model of the ISI probability density function. Our study clarifies some of the complexities of MC spiking dynamics.


Mathematical Concepts , Olfactory Bulb , Action Potentials/physiology , Models, Biological , Olfactory Bulb/physiology , Smell/physiology
4.
Chaos ; 32(3): 033123, 2022 Mar.
Article En | MEDLINE | ID: mdl-35364829

Spontaneous electrical activity, or automaticity, in the heart is required for normal physiological function. However, irregular automaticity, in particular, originating from the ventricles, can trigger life-threatening cardiac arrhythmias. Thus, understanding mechanisms of automaticity and synchronization is critical. Recent work has proposed that excitable cells coupled via a shared narrow extracellular cleft can mediate coupling, i.e., ephaptic coupling, that promotes automaticity in cell pairs. However, the dynamics of these coupled cells incorporating both ephaptic and gap junction coupling has not been explored. Here, we show that automaticity and synchronization robustly emerges via a Hopf bifurcation from either (i) increasing the fraction of inward rectifying potassium channels (carrying the IK1 current) at the junctional membrane or (ii) by decreasing the cleft volume. Furthermore, we explore how heterogeneity in the fraction of potassium channels between coupled cells can produce automaticity of both cells or neither cell, or more rarely in only one cell (i.e., automaticity without synchronization). Interestingly, gap junction coupling generally has minor effects, with only slight changes in regions of parameter space of automaticity. This work provides insight into potentially new mechanisms that promote spontaneous activity and, thus, triggers for arrhythmias in ventricular tissue.


Gap Junctions , Models, Cardiovascular , Action Potentials/physiology , Arrhythmias, Cardiac/metabolism , Gap Junctions/metabolism , Humans , Myocytes, Cardiac/metabolism
5.
iScience ; 24(9): 102946, 2021 Sep 24.
Article En | MEDLINE | ID: mdl-34485855

The spiking variability of neural networks has important implications for how information is encoded to higher brain regions. It has been well documented by numerous labs in many cortical and motor regions that spiking variability decreases with stimulus onset, yet whether this principle holds in the OB has not been tested. In stark contrast to this common view, we demonstrate that the onset of sensory input can cause an increase in the variability of neural activity in the mammalian OB. We show this in both anesthetized and awake rodents. Furthermore, we use computational models to describe the mechanisms of this phenomenon. Our findings establish sensory evoked increases in spiking variability as a viable alternative coding strategy.

6.
PLoS Comput Biol ; 17(9): e1009169, 2021 09.
Article En | MEDLINE | ID: mdl-34543261

The majority of olfaction studies focus on orthonasal stimulation where odors enter via the front nasal cavity, while retronasal olfaction, where odors enter the rear of the nasal cavity during feeding, is understudied. The coding of retronasal odors via coordinated spiking of neurons in the olfactory bulb (OB) is largely unknown despite evidence that higher level processing is different than orthonasal. To this end, we use multi-electrode array in vivo recordings of rat OB mitral cells (MC) in response to a food odor with both modes of stimulation, and find significant differences in evoked firing rates and spike count covariances (i.e., noise correlations). Differences in spiking activity often have implications for sensory coding, thus we develop a single-compartment biophysical OB model that is able to reproduce key properties of important OB cell types. Prior experiments in olfactory receptor neurons (ORN) showed retro stimulation yields slower and spatially smaller ORN inputs than with ortho, yet whether this is consequential for OB activity remains unknown. Indeed with these specifications for ORN inputs, our OB model captures the salient trends in our OB data. We also analyze how first and second order ORN input statistics dynamically transfer to MC spiking statistics with a phenomenological linear-nonlinear filter model, and find that retro inputs result in larger linear filters than ortho inputs. Finally, our models show that the temporal profile of ORN is crucial for capturing our data and is thus a distinguishing feature between ortho and retro stimulation, even at the OB. Using data-driven modeling, we detail how ORN inputs result in differences in OB dynamics and MC spiking statistics. These differences may ultimately shape how ortho and retro odors are coded.


Action Potentials/physiology , Models, Biological , Nasal Cavity/physiology , Olfactory Bulb/physiology , Animals , Odorants , Olfactory Bulb/cytology , Olfactory Receptor Neurons/physiology , Rats
7.
Neural Comput ; 33(3): 764-801, 2021 03.
Article En | MEDLINE | ID: mdl-33400901

A central theme in computational neuroscience is determining the neural correlates of efficient and accurate coding of sensory signals. Diversity, or heterogeneity, of intrinsic neural attributes is known to exist in many brain areas and is thought to significantly affect neural coding. Recent theoretical and experimental work has argued that in uncoupled networks, coding is most accurate at intermediate levels of heterogeneity. Here we consider this question with data from in vivo recordings of neurons in the electrosensory system of weakly electric fish subject to the same realization of noisy stimuli; we use a generalized linear model (GLM) to assess the accuracy of (Bayesian) decoding of stimulus given a population spiking response. The long recordings enable us to consider many uncoupled networks and a relatively wide range of heterogeneity, as well as many instances of the stimuli, thus enabling us to address this question with statistical power. The GLM decoding is performed on a single long time series of data to mimic realistic conditions rather than using trial-averaged data for better model fits. For a variety of fixed network sizes, we generally find that the optimal levels of heterogeneity are at intermediate values, and this holds in all core components of GLM. These results are robust to several measures of decoding performance, including the absolute value of the error, error weighted by the uncertainty of the estimated stimulus, and the correlation between the actual and estimated stimulus. Although a quadratic fit to decoding performance as a function of heterogeneity is statistically significant, the result is highly variable with low R2 values. Taken together, intermediate levels of neural heterogeneity are indeed a prominent attribute for efficient coding even within a single time series, but the performance is highly variable.


Models, Neurological , Neurons , Animals , Bayes Theorem , Linear Models
8.
Comput Psychiatr ; 5(1): 81-101, 2021.
Article En | MEDLINE | ID: mdl-38773993

Recent experiments and theories of human decision-making suggest positive and negative errors are processed and encoded differently by serotonin and dopamine, with serotonin possibly serving to oppose dopamine and protect against risky decisions. We introduce a temporal difference (TD) model of human decision-making to account for these features. Our model involves two critics, an optimistic learning system and a pessimistic learning system, whose predictions are integrated in time to control how potential decisions compete to be selected. Our model predicts that human decision-making can be decomposed along two dimensions: the degree to which the individual is sensitive to (1) risk and (2) uncertainty. In addition, we demonstrate that the model can learn about the mean and standard deviation of rewards, and provide information about reaction time despite not modeling these variables directly. Lastly, we simulate a recent experiment to show how updates of the two learning systems could relate to dopamine and serotonin transients, thereby providing a mathematical formalism to serotonin's hypothesized role as an opponent to dopamine. This new model should be useful for future experiments on human decision-making.

9.
Math Biosci Eng ; 16(4): 2023-2048, 2019 03 08.
Article En | MEDLINE | ID: mdl-31137198

The level of firing rate heterogeneity in a population of cortical neurons has consequences for how stimuli are processed. Recent studies have shown that the right amount of firing rate heterogeneity (not too much or too little) is a signature of efficient coding, thus quantifying the relative amount of firing rate heterogeneity is important. In a feedforward network of stochastic neural oscillators, we study the firing rate heterogeneity stemming from two sources: intrinsic (different individual cells) and network (different effects from presynaptic inputs). We find that the relationship between these two forms of heterogeneity can lead to significant changes in firing rate heterogeneity. We consider several networks, including noisy excitatory synaptic inputs, and noisy inputs with both excitatory and inhibitory inputs. To mathematically explain these results, we apply a phase reduction and derive asymptotic approximations of the firing rate statistics assuming weak noise and coupling. Our analytic calculations reveals how the interaction between intrinsic and network heterogeneity results in different firing rate distributions. Our work shows the importance of the phase-resetting curve (and various transformations of it revealed by our analytic calculations) in controlling firing rate statistics.


Action Potentials , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Oscillometry , Stochastic Processes , Algorithms , Animals , Computer Simulation , Humans , Models, Statistical , Monte Carlo Method , Neural Networks, Computer , Olfactory Bulb/physiology , Presynaptic Terminals
10.
J Math Neurosci ; 9(1): 2, 2019 May 09.
Article En | MEDLINE | ID: mdl-31073652

Understanding nervous system function requires careful study of transient (non-equilibrium) neural response to rapidly changing, noisy input from the outside world. Such neural response results from dynamic interactions among multiple, heterogeneous brain regions. Realistic modeling of these large networks requires enormous computational resources, especially when high-dimensional parameter spaces are considered. By assuming quasi-steady-state activity, one can neglect the complex temporal dynamics; however, in many cases the quasi-steady-state assumption fails. Here, we develop a new reduction method for a general heterogeneous firing-rate model receiving background correlated noisy inputs that accurately handles highly non-equilibrium statistics and interactions of heterogeneous cells. Our method involves solving an efficient set of nonlinear ODEs, rather than time-consuming Monte Carlo simulations or high-dimensional PDEs, and it captures the entire set of first and second order statistics while allowing significant heterogeneity in all model parameters.

11.
Am J Physiol Heart Circ Physiol ; 316(6): H1332-H1340, 2019 06 01.
Article En | MEDLINE | ID: mdl-30875256

Autonomic dysreflexia (AD) often occurs in individuals living with spinal cord injury (SCI) and is characterized by uncontrolled hypertension in response to otherwise innocuous stimuli originating below the level of the spinal lesion. Visceral stimulation is a predominant cause of AD in humans and effectively replicates the phenotype in rodent models of SCI. Direct assessment of sympathetic responses to viscerosensory stimulation in spinalized animals is challenging and requires invasive surgical procedures necessitating the use of anesthesia. However, administration of anesthesia markedly affects viscerosensory reactivity, and the effects are exacerbated following spinal cord injury (SCI). Therefore, the major goal of the present study was to develop a decerebrate rodent preparation to facilitate quantification of sympathetic responses to visceral stimulation in the spinalized rat. Such a preparation enables the confounding effect of anesthesia to be eliminated. Sprague-Dawley rats were subjected to SCI at the fourth thoracic segment. Four weeks later, renal sympathetic nerve activity (RSNA) responses to visceral stimuli were quantified in urethane/chloralose-anesthetized and decerebrate preparations. Visceral stimulation was elicited via colorectal distension (CRD) for 1 min. In the decerebrate preparation, CRD produced dose-dependent increases in mean arterial pressure (MAP) and RSNA and dose-dependent decreases in heart rate (HR). These responses were significantly greater in magnitude among decerebrate animals when compared with urethane/chloralose-anesthetized controls and were markedly attenuated by the administration of urethane/chloralose anesthesia after decerebration. We conclude that the decerebrate preparation enables high-fidelity quantification of neuronal reactivity to visceral stimulation in spinalized rats. NEW & NOTEWORTHY In animal models commonly used to study spinal cord injury, quantification of sympathetic responses is particularly challenging due to the increased susceptibility of spinal reflex circuits to the anesthetic agents generally required for experimentation. This constitutes a major limitation to understanding the mechanisms mediating regionally specific neuronal responses to visceral activation in chronically spinalized animals. In the present study, we describe a spinalized, decerebrate rodent preparation that facilitates quantification of sympathetic reactivity in response to visceral stimuli following spinal cord injury. This preparation enables reliable and reproducible quantification of viscero-sympathetic reflex responses resembling those elicited in conscious animals and may provide added utility for preclinical evaluation of neuropharmacological agents for the management of autonomic dysreflexia.


Autonomic Dysreflexia/physiopathology , Decerebrate State , Kidney/innervation , Reflex , Spinal Cord/physiopathology , Sympathetic Nervous System/physiopathology , Anesthetics, Intravenous/pharmacology , Animals , Chloralose/pharmacology , Disease Models, Animal , Hemodynamics , Male , Rats, Sprague-Dawley , Urethane/pharmacology
12.
J Theor Biol ; 459: 18-35, 2018 12 14.
Article En | MEDLINE | ID: mdl-30248329

The sinoatrial-node (SAN) is a complex heterogeneous tissue that generates a stable rhythm in healthy hearts, yet a general mechanistic explanation for when and how this tissue remains stable is lacking. Although computational and theoretical analyses could elucidate these phenomena, such methods have rarely been used in realistic (large-dimensional) gap-junction coupled heterogeneous pacemaker tissue models. In this study, we adapt a recent model of pacemaker cells (Severi et al., 2012), incorporating biophysical representations of ion channel and intracellular calcium dynamics, to capture physiological features of a heterogeneous population of pacemaker cells, in particular "center" and "peripheral" cells with distinct intrinsic frequencies and action potential morphology. Large-scale simulations of the SAN tissue, represented by a heterogeneous tissue structure of pacemaker cells, exhibit a rich repertoire of behaviors, including complete synchrony, traveling waves of activity originating from periphery to center, and transient traveling waves originating from the center. We use phase reduction methods that do not require fully simulating the large-scale model to capture these observations. Moreover, the phase reduced models accurately predict key properties of the tissue electrical dynamics, including wave frequencies when synchronization occurs, and wave propagation direction in a variety of tissue models. With the reduced phase models, we analyze the relationship between cell distributions and coupling strengths and the resulting transient dynamics. Further, the reduced phase model predicts parameter regimes of irregular electrical dynamics. Thus, we demonstrate that phase reduced oscillator models applied to realistic pacemaker tissue is a useful tool for investigating the spatial-temporal dynamics of cardiac pacemaker activity.


Biological Clocks/physiology , Models, Cardiovascular , Sinoatrial Node/physiology , Spatio-Temporal Analysis , Action Potentials/physiology , Animals , Gap Junctions/physiology , Humans , Myocytes, Cardiac/physiology
13.
J Math Neurosci ; 8(1): 8, 2018 Jun 06.
Article En | MEDLINE | ID: mdl-29872932

The structure of spiking activity in cortical networks has important implications for how the brain ultimately codes sensory signals. However, our understanding of how network and intrinsic cellular mechanisms affect spiking is still incomplete. In particular, whether cell pairs in a neural network show a positive (or no) relationship between pairwise spike count correlation and average firing rate is generally unknown. This relationship is important because it has been observed experimentally in some sensory systems, and it can enhance information in a common population code. Here we extend our prior work in developing mathematical tools to succinctly characterize the correlation and firing rate relationship in heterogeneous coupled networks. We find that very modest changes in how heterogeneous networks occupy parameter space can dramatically alter the correlation-firing rate relationship.

14.
J Comput Neurosci ; 44(1): 75-95, 2018 02.
Article En | MEDLINE | ID: mdl-29124504

Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.


Action Potentials/physiology , Models, Neurological , Neural Networks, Computer , Neural Pathways/physiology , Pyramidal Cells/physiology , Animals , Computer Simulation , Electric Fish , Electric Stimulation , Female , Male , Rhombencephalon/cytology , Time Factors
15.
PLoS Comput Biol ; 13(10): e1005780, 2017 Oct.
Article En | MEDLINE | ID: mdl-28968384

Determining how synaptic coupling within and between regions is modulated during sensory processing is an important topic in neuroscience. Electrophysiological recordings provide detailed information about neural spiking but have traditionally been confined to a particular region or layer of cortex. Here we develop new theoretical methods to study interactions between and within two brain regions, based on experimental measurements of spiking activity simultaneously recorded from the two regions. By systematically comparing experimentally-obtained spiking statistics to (efficiently computed) model spike rate statistics, we identify regions in model parameter space that are consistent with the experimental data. We apply our new technique to dual micro-electrode array in vivo recordings from two distinct regions: olfactory bulb (OB) and anterior piriform cortex (PC). Our analysis predicts that: i) inhibition within the afferent region (OB) has to be weaker than the inhibition within PC, ii) excitation from PC to OB is generally stronger than excitation from OB to PC, iii) excitation from PC to OB and inhibition within PC have to both be relatively strong compared to presynaptic inputs from OB. These predictions are validated in a spiking neural network model of the OB-PC pathway that satisfies the many constraints from our experimental data. We find when the derived relationships are violated, the spiking statistics no longer satisfy the constraints from the data. In principle this modeling framework can be adapted to other systems and be used to investigate relationships between other neural attributes besides network connection strengths. Thus, this work can serve as a guide to further investigations into the relationships of various neural attributes within and across different regions during sensory processing.


Computational Biology/methods , Nerve Net/physiology , Olfactory Bulb/physiology , Olfactory Pathways/physiology , Smell/physiology , Animals , Cerebral Cortex/physiology , Male , Models, Neurological , Odorants , Rats
16.
Phys Rev E ; 96(2-1): 022413, 2017 Aug.
Article En | MEDLINE | ID: mdl-28950506

Rapid experimental advances now enable simultaneous electrophysiological recording of neural activity at single-cell resolution across large regions of the nervous system. Models of this neural network activity will necessarily increase in size and complexity, thus increasing the computational cost of simulating them and the challenge of analyzing them. Here we present a method to approximate the activity and firing statistics of a general firing rate network model (of the Wilson-Cowan type) subject to noisy correlated background inputs. The method requires solving a system of transcendental equations and is fast compared to Monte Carlo simulations of coupled stochastic differential equations. We implement the method with several examples of coupled neural networks and show that the results are quantitatively accurate even with moderate coupling strengths and an appreciable amount of heterogeneity in many parameters. This work should be useful for investigating how various neural attributes qualitatively affect the spiking statistics of coupled neural networks.


Action Potentials , Models, Neurological , Neurons/physiology , Animals , Computer Simulation , Monte Carlo Method , Neural Pathways/physiology , Nonlinear Dynamics , Stochastic Processes , Time Factors
17.
PLoS One ; 12(5): e0176963, 2017.
Article En | MEDLINE | ID: mdl-28472143

The stochastic nature of neuronal response has lead to conjectures about the impact of input fluctuations on the neural coding. For the most part, low pass membrane integration and spike threshold dynamics have been the primary features assumed in the transfer from synaptic input to output spiking. Phasic neurons are a common, but understudied, neuron class that are characterized by a subthreshold negative feedback that suppresses spike train responses to low frequency signals. Past work has shown that when a low frequency signal is accompanied by moderate intensity broadband noise, phasic neurons spike trains are well locked to the signal. We extend these results with a simple, reduced model of phasic activity that demonstrates that a non-Markovian spike train structure caused by the negative feedback produces a noise-enhanced coding. Further, this enhancement is sensitive to the timescales, as opposed to the intensity, of a driving signal. Reduced hazard function models show that noise-enhanced phasic codes are both novel and separate from classical stochastic resonance reported in non-phasic neurons. The general features of our theory suggest that noise-enhanced codes in excitable systems with subthreshold negative feedback are a particularly rich framework to study.


Action Potentials , Neurons/physiology , Noise , Animals , Markov Chains , Models, Theoretical , Monte Carlo Method , Stochastic Processes
18.
PLoS Comput Biol ; 13(4): e1005506, 2017 04.
Article En | MEDLINE | ID: mdl-28448499

A central question in neuroscience is to understand how noisy firing patterns are used to transmit information. Because neural spiking is noisy, spiking patterns are often quantified via pairwise correlations, or the probability that two cells will spike coincidentally, above and beyond their baseline firing rate. One observation frequently made in experiments, is that correlations can increase systematically with firing rate. Theoretical studies have determined that stimulus-dependent correlations that increase with firing rate can have beneficial effects on information coding; however, we still have an incomplete understanding of what circuit mechanisms do, or do not, produce this correlation-firing rate relationship. Here, we studied the relationship between pairwise correlations and firing rates in recurrently coupled excitatory-inhibitory spiking networks with conductance-based synapses. We found that with stronger excitatory coupling, a positive relationship emerged between pairwise correlations and firing rates. To explain these findings, we used linear response theory to predict the full correlation matrix and to decompose correlations in terms of graph motifs. We then used this decomposition to explain why covariation of correlations with firing rate-a relationship previously explained in feedforward networks driven by correlated input-emerges in some recurrent networks but not in others. Furthermore, when correlations covary with firing rate, this relationship is reflected in low-rank structure in the correlation matrix.


Action Potentials/physiology , Computer Simulation , Models, Neurological , Nerve Net/physiology , Animals , Cerebral Cortex/physiology , Computational Biology , Mice
19.
J Comput Neurosci ; 39(3): 311-27, 2015 Dec.
Article En | MEDLINE | ID: mdl-26453404

Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.


Action Potentials/physiology , Computer Simulation , Models, Neurological , Nerve Net/physiology , Neural Networks, Computer , Animals , Cerebral Cortex/cytology , Humans , Mice , Monte Carlo Method , Stochastic Processes
20.
Neural Comput ; 25(10): 2682-708, 2013 Oct.
Article En | MEDLINE | ID: mdl-23777517

The population density approach to neural network modeling has been utilized in a variety of contexts. The idea is to group many similar noisy neurons into populations and track the probability density function for each population that encompasses the proportion of neurons with a particular state rather than simulating individual neurons (i.e., Monte Carlo). It is commonly used for both analytic insight and as a time-saving computational tool. The main shortcoming of this method is that when realistic attributes are incorporated in the underlying neuron model, the dimension of the probability density function increases, leading to intractable equations or, at best, computationally intensive simulations. Thus, developing principled dimension-reduction methods is essential for the robustness of these powerful methods. As a more pragmatic tool, it would be of great value for the larger theoretical neuroscience community. For exposition of this method, we consider a single uncoupled population of leaky integrate-and-fire neurons receiving external excitatory synaptic input only. We present a dimension-reduction method that reduces a two-dimensional partial differential-integral equation to a computationally efficient one-dimensional system and gives qualitatively accurate results in both the steady-state and nonequilibrium regimes. The method, termed modified mean-field method, is based entirely on the governing equations and not on any auxiliary variables or parameters, and it does not require fine-tuning. The principles of the modified mean-field method have potential applicability to more realistic (i.e., higher-dimensional) neural networks.


Models, Neurological , Nerve Net/physiology , Neural Networks, Computer , Neurons/physiology , Synapses/physiology , Algorithms , Computer Simulation , Excitatory Postsynaptic Potentials/physiology , Monte Carlo Method , Nerve Net/cytology , Poisson Distribution , Population , Probability , Reproducibility of Results
...