Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 36(8): 1639-1641, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39111283

RESUMEN

During aging, transcriptional programs of cell identity are partially eroded, reducing cellular fitness and resilience. Patrick et al.1 unveil a general mechanism for this process that consists of the progressive loss of transcription factor AP-1 from cell identity enhancers and its relocation by competition to stress-response elements.


Asunto(s)
Cromatina , Factor de Transcripción AP-1 , Factor de Transcripción AP-1/metabolismo , Cromatina/metabolismo , Animales , Envejecimiento/metabolismo , Humanos , Elementos de Facilitación Genéticos/genética , Senescencia Celular
2.
Nat Neurosci ; 27(8): 1545-1554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849524

RESUMEN

In the mouse embryonic forebrain, developmentally distinct oligodendrocyte progenitor cell populations and their progeny, oligodendrocytes, emerge from three distinct regions in a spatiotemporal gradient from ventral to dorsal. However, the functional importance of this oligodendrocyte developmental heterogeneity is unknown. Using a genetic strategy to ablate dorsally derived oligodendrocyte lineage cells (OLCs), we show here that the areas in which dorsally derived OLCs normally reside in the adult central nervous system become populated and myelinated by OLCs of ventral origin. These ectopic oligodendrocytes (eOLs) have a distinctive gene expression profile as well as subtle myelination abnormalities. The failure of eOLs to fully assume the role of the original dorsally derived cells results in locomotor and cognitive deficits in the adult animal. This study reveals the importance of developmental heterogeneity within the oligodendrocyte lineage and its importance for homeostatic brain function.


Asunto(s)
Encéfalo , Linaje de la Célula , Oligodendroglía , Animales , Oligodendroglía/fisiología , Ratones , Encéfalo/citología , Encéfalo/embriología , Linaje de la Célula/fisiología , Diferenciación Celular/fisiología , Ratones Transgénicos , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología
3.
Cell Rep ; 42(8): 112897, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516962

RESUMEN

Cell identity is orchestrated through an interplay between transcription factor (TF) action and genome architecture. The mechanisms used by TFs to shape three-dimensional (3D) genome organization remain incompletely understood. Here we present evidence that the lineage-instructive TF CEBPA drives extensive chromatin compartment switching and promotes the formation of long-range chromatin hubs during induced B cell-to-macrophage transdifferentiation. Mechanistically, we find that the intrinsically disordered region (IDR) of CEBPA undergoes in vitro phase separation (PS) dependent on aromatic residues. Both overexpressing B cells and native CEBPA-expressing cell types such as primary granulocyte-macrophage progenitors, liver cells, and trophectoderm cells reveal nuclear CEBPA foci and long-range 3D chromatin hubs at CEBPA-bound regions. In short, we show that CEBPA can undergo PS through its IDR, which may underlie in vivo foci formation and suggest a potential role of PS in regulating CEBPA function.


Asunto(s)
Cromatina , Regulación de la Expresión Génica , Núcleo Celular , Macrófagos
4.
Stem Cell Reports ; 17(11): 2501-2517, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36270281

RESUMEN

Differentiated cells can be converted into pluripotent stem cells by expressing the transcription factors OCT4, SOX2, KLF4, and MYC (OSKM) in a process known as reprogramming. Here, using single-cell RNA sequencing of pancreas undergoing reprogramming, we identify markers along the trajectory from acinar cell identity to pluripotency. These markers allow direct in situ visualization of cells undergoing dedifferentiation and acquiring features of early and advanced intermediate reprogramming. We also find that a fraction of cells do not dedifferentiate upon OSKM expression and are characterized by stress markers of the REG3 and AP-1 families. Importantly, most markers of intermediate reprogramming in the pancreas are also observed in stomach, colon, and cultured fibroblasts expressing OSKM. Among them is LY6A, a protein characteristic of progenitor cells and generally upregulated during tissue repair. Our roadmap defines intermediate reprogramming states that could be functionally relevant for tissue regeneration and rejuvenation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Reprogramación Celular/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/genética , Fibroblastos/metabolismo , Factor 4 Similar a Kruppel
5.
Mol Syst Biol ; 18(9): e11276, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36102256

RESUMEN

Assessing age-related tissue dysfunction represents an emerging field and involves analyses that are far from trivial, often requiring the integration of several large-scale ("omic") techniques. In their recent work, Tessarz and colleagues (Bozukova et al, 2022) characterize changes in the transcriptional machinery during aging in mice and report some surprising findings.


Asunto(s)
Cromatina , Transcripción Genética , Animales , Cromatina/genética , Ratones
6.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35420133

RESUMEN

The ectopic expression of the transcription factors OCT4, SOX2, KLF4 and MYC (OSKM) enables reprogramming of differentiated cells into pluripotent embryonic stem cells. Methods based on partial and reversible in vivo reprogramming are a promising strategy for tissue regeneration and rejuvenation. However, little is known about the barriers that impair reprogramming in an in vivo context. We report that natural killer (NK) cells significantly limit reprogramming, both in vitro and in vivo. Cells and tissues in the intermediate states of reprogramming upregulate the expression of NK-activating ligands, such as MULT1 and ICAM1. NK cells recognize and kill partially reprogrammed cells in a degranulation-dependent manner. Importantly, in vivo partial reprogramming is strongly reduced by adoptive transfer of NK cells, whereas it is significantly increased by their depletion. Notably, in the absence of NK cells, the pancreatic organoids derived from OSKM-expressing mice are remarkably large, suggesting that ablating NK surveillance favours the acquisition of progenitor-like properties. We conclude that NK cells pose an important barrier for in vivo reprogramming, and speculate that this concept may apply to other contexts of transient cellular plasticity.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes , Animales , Diferenciación Celular , Reprogramación Celular/genética , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Células Asesinas Naturales/metabolismo , Factor 4 Similar a Kruppel/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Factores de Transcripción SOXB1/metabolismo
7.
Cells ; 10(4)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921436

RESUMEN

Pluripotent stem cells can be stabilized in vitro at different developmental states by the use of specific chemicals and soluble factors. The naïve and primed states are the best characterized pluripotency states. Naïve pluripotent stem cells (PSCs) correspond to the early pre-implantation blastocyst and, in mice, constitute the optimal starting state for subsequent developmental applications. However, the stabilization of human naïve PSCs remains challenging because, after short-term culture, most current methods result in karyotypic abnormalities, aberrant DNA methylation patterns, loss of imprinting and severely compromised developmental potency. We have recently developed a novel method to induce and stabilize naïve human PSCs that consists in the simple addition of a chemical inhibitor for the closely related CDK8 and CDK19 kinases (CDK8/19i). Long-term cultured CDK8/19i-naïve human PSCs preserve their normal karyotype and do not show widespread DNA demethylation. Here, we investigate the long-term stability of allele-specific methylation at imprinted loci and the differentiation potency of CDK8/19i-naïve human PSCs. We report that long-term cultured CDK8/19i-naïve human PSCs retain the imprinting profile of their parental primed cells, and imprints are further retained upon differentiation in the context of teratoma formation. We have also tested the capacity of long-term cultured CDK8/19i-naïve human PSCs to differentiate into primordial germ cell (PGC)-like cells (PGCLCs) and trophoblast stem cells (TSCs), two cell types that are accessible from the naïve state. Interestingly, long-term cultured CDK8/19i-naïve human PSCs differentiated into PGCLCs with a similar efficiency to their primed counterparts. Also, long-term cultured CDK8/19i-naïve human PSCs were able to differentiate into TSCs, a transition that was not possible for primed PSCs. We conclude that inhibition of CDK8/19 stabilizes human PSCs in a functional naïve state that preserves imprinting and potency over long-term culture.


Asunto(s)
Diferenciación Celular , Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Impresión Genómica , Inhibidores de Proteínas Quinasas/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Células Germinativas/citología , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Trofoblastos/citología , Trofoblastos/efectos de los fármacos
8.
Commun Biol ; 4(1): 414, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772081

RESUMEN

A disordered to ß-sheet transition was thought to drive the functional switch of Q/N-rich prions, similar to pathogenic amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) regions within yeast prion domains in amyloid formation. We show that many human prion-like domains (PrLDs) contain CC regions that overlap with polyQ tracts. Most of the proteins bearing these domains are transcriptional coactivators, including the Mediator complex subunit 15 (MED15) involved in bridging enhancers and promoters. We demonstrate that the human MED15-PrLD forms homodimers in solution sustained by CC interactions and that it is this CC fold that mediates the transition towards a ß-sheet amyloid state, its chemical or genetic disruption abolishing aggregation. As in functional yeast prions, a GFP globular domain adjacent to MED15-PrLD retains its structural integrity in the amyloid state. Expression of MED15-PrLD in human cells promotes the formation of cytoplasmic and perinuclear inclusions, kidnapping endogenous full-length MED15 to these aggregates in a prion-like manner. The prion-like properties of MED15 are conserved, suggesting novel mechanisms for the function and malfunction of this transcription coactivator.


Asunto(s)
Amiloide/metabolismo , Complejo Mediador/metabolismo , Priones/metabolismo , Células HeLa , Humanos , Cinética , Complejo Mediador/genética , Agregado de Proteínas , Agregación Patológica de Proteínas , Conformación Proteica en Lámina beta , Dominios Proteicos , Multimerización de Proteína
9.
Nat Commun ; 12(1): 1863, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767186

RESUMEN

Embryonic stem cells (ESCs) can be maintained in the naïve state through inhibition of Mek1/2 and Gsk3 (2i). A relevant effect of 2i is the inhibition of Cdk8/19, which are negative regulators of the Mediator complex, responsible for the activity of enhancers. Inhibition of Cdk8/19 (Cdk8/19i) stimulates enhancers and, similar to 2i, stabilizes ESCs in the naïve state. Here, we use mass spectrometry to describe the molecular events (phosphoproteome, proteome, and metabolome) triggered by 2i and Cdk8/19i on ESCs. Our data reveal widespread commonalities between these two treatments, suggesting overlapping processes. We find that post-transcriptional de-repression by both 2i and Cdk8/19i might support the mitochondrial capacity of naive cells. However, proteome reprogramming in each treatment is achieved by different mechanisms. Cdk8/19i acts directly on the transcriptional machinery, activating key identity genes to promote the naïve program. In contrast, 2i stabilizes the naïve circuitry through, in part, de-phosphorylation of downstream transcriptional effectors.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Animales , Benzamidas/farmacología , Línea Celular , Difenilamina/análogos & derivados , Difenilamina/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fosforilación/fisiología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
10.
Stem Cell Reports ; 16(1): 56-74, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33382978

RESUMEN

After reprogramming to naive pluripotency, human pluripotent stem cells (PSCs) still exhibit very low ability to make interspecies chimeras. Whether this is because they are inherently devoid of the attributes of chimeric competency or because naive PSCs cannot colonize embryos from distant species remains to be elucidated. Here, we have used different types of mouse, human, and rhesus monkey naive PSCs and analyzed their ability to colonize rabbit and cynomolgus monkey embryos. Mouse embryonic stem cells (ESCs) remained mitotically active and efficiently colonized host embryos. In contrast, primate naive PSCs colonized host embryos with much lower efficiency. Unlike mouse ESCs, they slowed DNA replication after dissociation and, after injection into host embryos, they stalled in the G1 phase and differentiated prematurely, regardless of host species. We conclude that human and non-human primate naive PSCs do not efficiently make chimeras because they are inherently unfit to remain mitotically active during colonization.


Asunto(s)
Diferenciación Celular , Quimera/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Células Madre Pluripotentes/citología , Animales , Apoptosis , Reprogramación Celular , Transferencia de Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Humanos , Macaca mulatta , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Conejos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Nat Cell Biol ; 22(10): 1223-1238, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32989249

RESUMEN

Pluripotent stem cells (PSCs) transition between cell states in vitro, reflecting developmental changes in the early embryo. PSCs can be stabilized in the naive state by blocking extracellular differentiation stimuli, particularly FGF-MEK signalling. Here, we report that multiple features of the naive state in human and mouse PSCs can be recapitulated without affecting FGF-MEK signalling or global DNA methylation. Mechanistically, chemical inhibition of CDK8 and CDK19 (hereafter CDK8/19) kinases removes their ability to repress the Mediator complex at enhancers. CDK8/19 inhibition therefore increases Mediator-driven recruitment of RNA polymerase II (RNA Pol II) to promoters and enhancers. This efficiently stabilizes the naive transcriptional program and confers resistance to enhancer perturbation by BRD4 inhibition. Moreover, naive pluripotency during embryonic development coincides with a reduction in CDK8/19. We conclude that global hyperactivation of enhancers drives naive pluripotency, and this can be achieved in vitro by inhibiting CDK8/19 kinase activity. These principles may apply to other contexts of cellular plasticity.


Asunto(s)
Diferenciación Celular , Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Metilación de ADN , Elementos de Facilitación Genéticos , Células Madre Pluripotentes/citología , Animales , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Femenino , Humanos , Ratones , Fosforilación , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal
12.
Exp Cell Res ; 395(2): 112215, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32771524

RESUMEN

Human naïve pluripotent stem cells (PSCs) represent an optimal homogenous starting point for molecular interventions and differentiation strategies. This is in contrast to the standard primed PSCs which fluctuate in identity and are transcriptionally heterogeneous. However, despite many efforts, the maintenance and expansion of human naïve PSCs remains a challenge. Here, we discuss our recent strategy for the stabilization of human PSC in the naïve state based on the use of a single chemical inhibitor of the related kinases CDK8 and CDK19. These kinases phosphorylate and negatively regulate the multiprotein Mediator complex, which is critical for enhancer-driven recruitment of RNA Pol II. The net effect of CDK8/19 inhibition is a global stimulation of enhancers, which in turn reinforces transcriptional programs including those related to cellular identity. In the case of pluripotent cells, the presence of CDK8/19i efficiently stabilizes the naïve state. Importantly, in contrast to previous chemical methods to induced the naïve state based on the inhibition of the FGF-MEK-ERK pathway, CDK8/19i-naïve human PSCs are chromosomally stable and retain developmental potential after long-term expansion. We suggest this could be related to the fact that CDK8/19 inhibition does not induce DNA demethylation. These principles may apply to other fate decisions.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Complejo Mediador/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Transducción de Señal/fisiología
13.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30021836

RESUMEN

The NAD+-dependent deacetylase SIRT1 can be oncogenic or tumor suppressive depending on the tissue. Little is known about the role of SIRT1 in non-small cell lung carcinoma (NSCLC), one of the deadliest cancers, that is frequently associated with mutated K-RAS Therefore, we investigated the effect of SIRT1 on K-RAS-driven lung carcinogenesis. We report that SIRT1 protein levels are downregulated by oncogenic K-RAS in a MEK and PI3K-dependent manner in mouse embryo fibroblasts (MEFs), and in human lung adenocarcinoma cell lines. Furthermore, Sirt1 overexpression in mice delays the appearance of K-RasG12V-driven lung adenocarcinomas, reducing the number and size of carcinomas at the time of death and extending survival. Consistently, lower levels of SIRT1 are associated with worse prognosis in human NSCLCs. Mechanistically, analysis of mouse Sirt1-Tg pneumocytes, isolated shortly after K-RasG12V activation, reveals that Sirt1 overexpression alters pathways involved in tumor development: proliferation, apoptosis, or extracellular matrix organization. Our work demonstrates a tumor suppressive role of SIRT1 in the development of K-RAS-driven lung adenocarcinomas in mice and humans, suggesting that the SIRT1-K-RAS axis could be a therapeutic target for NSCLCs.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Carcinogénesis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sirtuina 1/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Células Epiteliales Alveolares , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Células Cultivadas , Regulación hacia Abajo , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Supervivencia sin Progresión , Proteínas Proto-Oncogénicas p21(ras)/genética
14.
Cell Rep ; 22(2): 396-410, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29320736

RESUMEN

The RNA polymerase II-associated protein 1 (RPAP1) is conserved across metazoa and required for stem cell differentiation in plants; however, very little is known about its mechanism of action or its role in mammalian cells. Here, we report that RPAP1 is essential for the expression of cell identity genes and for cell viability. Depletion of RPAP1 triggers cell de-differentiation, facilitates reprogramming toward pluripotency, and impairs differentiation. Mechanistically, we show that RPAP1 is essential for the interaction between RNA polymerase II (RNA Pol II) and Mediator, as well as for the recruitment of important regulators, such as the Mediator-specific RNA Pol II factor Gdown1 and the C-terminal domain (CTD) phosphatase RPAP2. In agreement, depletion of RPAP1 diminishes the loading of total and Ser5-phosphorylated RNA Pol II on many genes, with super-enhancer-driven genes among the most significantly downregulated. We conclude that Mediator/RPAP1/RNA Pol II is an ancient module, conserved from plants to mammals, critical for establishing and maintaining cell identity.


Asunto(s)
ARN Polimerasa II/genética , Transcripción Genética/genética , Animales
15.
Cell Stem Cell ; 11(6): 845-52, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217425

RESUMEN

The mechanisms responsible for the transcriptional silencing of pluripotency genes in differentiated cells are poorly understood. We have observed that cells lacking the tumor suppressor p27 can be reprogrammed into induced pluripotent stem cells (iPSCs) in the absence of ectopic Sox2. Interestingly, cells and tissues from p27 null mice, including brain, lung, and retina, present an elevated basal expression of Sox2, suggesting that p27 contributes to the repression of Sox2. Furthermore, p27 null iPSCs fail to fully repress Sox2 upon differentiation. Mechanistically, we have found that upon differentiation p27 associates to the SRR2 enhancer of the Sox2 gene together with a p130-E2F4-SIN3A repressive complex. Finally, Sox2 haploinsufficiency genetically rescues some of the phenotypes characteristic of p27 null mice, including gigantism, pituitary hyperplasia, pituitary tumors, and retinal defects. Collectively, these results demonstrate an unprecedented connection between p27 and Sox2 relevant for reprogramming and cancer and for understanding human pathologies associated with p27 germline mutations.


Asunto(s)
Diferenciación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/deficiencia , Factor de Transcripción E2F4/metabolismo , Embrión de Mamíferos/citología , Elementos de Facilitación Genéticos/genética , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Haploinsuficiencia/genética , Heterocigoto , Humanos , Ratones , Fenotipo , Unión Proteica/genética , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Factores de Transcripción SOXB1/genética , Complejo Correpresor Histona Desacetilasa y Sin3 , Factores de Transcripción/metabolismo
16.
PLoS One ; 5(10): e13502, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20975832

RESUMEN

BACKGROUND: The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-ΔExon8. We show that SIRT1-ΔExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-ΔExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL). We also identify an auto-regulatory loop whereby SIRT1-ΔExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. CONCLUSIONS/SIGNIFICANCE: We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed between SIRT1 isoforms, with important implications for SIRT1 functional studies and the current search for SIRT1-activating therapeutics to combat age-related decline.


Asunto(s)
Empalme Alternativo , Sirtuina 1/fisiología , Proteína p53 Supresora de Tumor/fisiología , Acetilación , Animales , Exones , Humanos , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sirtuina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA