Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
bioRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38617256

RESUMEN

Gene loss can promote phenotypic differences between species, for example, if a gene constrains phenotypic variation in a trait, its loss allows for the evolution of a greater range of variation or even new phenotypes. Here, we explore the contribution of gene loss to the evolution of large bodies and augmented cancer resistance in elephants. We used genomes from 17 Afrotherian and Xenarthran species to identify lost genes, i.e., genes that have pseudogenized or been completely lost, and Dollo parsimony to reconstruct the evolutionary history of gene loss across species. We unexpectedly discovered a burst of gene losses in the Afrotherian stem lineage and found that the loss of genes with functions in regulated necrotic cell death modes was pervasive in elephants, hyraxes, and sea cows (Paenungulata). Among the lost genes are MLKL and RIPK3, which mediate necroptosis, and sensors that activate inflammasomes to induce pyroptosis, including AIM2, MEFV, NLRC4, NLRP1, and NLRP6. These data suggest that the mechanisms that regulate necrosis and pyroptosis are either extremely derived or potentially lost in these lineages, which may contribute to the repeated evolution of large bodies and cancer resistance in Paenungulates as well as susceptibility to pathogen infection.

2.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38463968

RESUMEN

Elephants have emerged as a model system to study the evolution of body size and cancer resistance because, despite their immense size, they have a very low prevalence of cancer. Previous studies have found that duplication of tumor suppressors at least partly contributes to the evolution of anti-cancer cellular phenotypes in elephants. Still, many other mechanisms must have contributed to their augmented cancer resistance. Here, we use a suite of codon-based maximum-likelihood methods and a dataset of 13,310 protein-coding gene alignments from 261 Eutherian mammals to identify positively selected and rapidly evolving elephant genes. We found 496 genes (3.73% of alignments tested) with statistically significant evidence for positive selection and 660 genes (4.96% of alignments tested) that likely evolved rapidly in elephants. Positively selected and rapidly evolving genes are statistically enriched in gene ontology terms and biological pathways related to regulated cell death mechanisms, DNA damage repair, cell cycle regulation, epidermal growth factor receptor (EGFR) signaling, and immune functions, particularly neutrophil granules and degranulation. All of these biological factors are plausibly related to the evolution of cancer resistance. Thus, these positively selected and rapidly evolving genes are promising candidates for genes contributing to elephant-specific traits, including the evolution of molecular and cellular characteristics that enhance cancer resistance.

3.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106080

RESUMEN

Phylogenetic studies have resolved most relationships among Eutherian Orders. However, the branching order of elephants (Proboscidea), hyraxes (Hyracoidea), and sea cows (Sirenia) (i.e., the Paenungulata) has remained uncertain since at least 1758, when Linnaeus grouped elephants and manatees into a single Order (Bruta) to the exclusion of hyraxes. Subsequent morphological, molecular, and large-scale phylogenomic datasets have reached conflicting conclusions on the branching order within Paenungulates. We use a phylogenomic dataset of alignments from 13,388 protein-coding genes across 261 Eutherian mammals to infer phylogenetic relationships within Paenungulates. We find that gene trees almost equally support the three alternative resolutions of Paenungulate relationships and that despite strong support for a Proboscidea+Hyracoidea split in the multispecies coalescent (MSC) tree, there is significant evidence for gene tree uncertainty, incomplete lineage sorting, and introgression among Proboscidea, Hyracoidea, and Sirenia. Indeed, only 8-10% of genes have statistically significant phylogenetic signal to reject the hypothesis of a Paenungulate polytomy. These data indicate little support for any resolution for the branching order Proboscidea, Hyracoidea, and Sirenia within Paenungulata and suggest that Paenungulata may be as close to a real, or at least unresolvable, polytomy as possible.

4.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37254877

RESUMEN

Embryo implantation in humans is interstitial, meaning the entire conceptus embeds in the endometrium before the placental trophoblast invades beyond the uterine mucosa into the underlying inner myometrium. Once implanted, embryo survival pivots on the transformation of the endometrium into an anti-inflammatory placental bed, termed decidua, under homeostatic control of uterine natural killer cells. Here, we examine the evolutionary context of embryo implantation and elaborate on uterine remodelling before and after conception in humans. We also discuss the interactions between the embryo and the decidualising endometrium that regulate interstitial implantation and determine embryo fitness. Together, this Review highlights the precarious but adaptable nature of the implantation process.


Asunto(s)
Implantación del Embrión , Placenta , Embarazo , Humanos , Femenino , Endometrio/fisiología , Útero , Embrión de Mamíferos/fisiología
5.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36911992

RESUMEN

The sensory epithelium of the inner ear, found in all extant lineages of vertebrates, has been subjected to over 500 million years of evolution, resulting in the complex inner ear of modern vertebrates. Inner-ear adaptations are as diverse as the species in which they are found, and such unique anatomical variations have been well studied. However, the evolutionary details of the molecular machinery that is required for hearing are less well known. Two molecules that are essential for hearing in vertebrates are cadherin-23 and protocadherin-15, proteins whose interaction with one another acts as the focal point of force transmission when converting sound waves into electrical signals that the brain can interpret. This "tip-link" interaction exists in every lineage of vertebrates, but little is known about the structure or mechanical properties of these proteins in most non-mammalian lineages. Here, we use various techniques to characterize the evolution of this protein interaction. Results show how evolutionary sequence changes in this complex affect its biophysical properties both in simulations and experiments, with variations in interaction strength and dynamics among extant vertebrate lineages. Evolutionary simulations also characterize how the biophysical properties of the complex in turn constrain its evolution and provide a possible explanation for the increase in deafness-causing mutants observed in cadherin-23 relative to protocadherin-15. Together, these results suggest a general picture of tip-link evolution in which selection acted to modify the tip-link interface, although subsequent neutral evolution combined with varying degrees of purifying selection drove additional diversification in modern tetrapods.


Asunto(s)
Oído Interno , Protocadherinas , Animales , Oído Interno/metabolismo , Audición , Cadherinas/genética , Cadherinas/química , Cadherinas/metabolismo
6.
J Exp Zool B Mol Dev Evol ; 340(8): 509-517, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-35644942

RESUMEN

There is a longstanding interest in whether the loss of complex characters is reversible (so-called "Dollo's law"). Reevolution has been suggested for numerous traits but among the first was Kurtén, who proposed that the presence of the second lower molar (M2 ) of the Eurasian lynx (Lynx lynx) was a violation of Dollo's law because all other Felids lack M2 . While an early and often cited example for the reevolution of a complex trait, Kurtén and Werdelin used an ad hoc parsimony argument to support their. Here I revisit the evidence that M2 reevolved lynx using explicit parsimony and maximum likelihood models of character evolution and find strong evidence that Kurtén and Werdelin were correct-M2 reevolved in E. lynx. Next, I explore the developmental mechanisms which may explain this violation of Dollo's law and suggest that the reevolution of lost complex traits may arise from the reevolution of cis-regulatory elements and protein-protein interactions, which have a longer half-life after silencing that protein coding genes. Finally, I present a developmental model to explain the reevolution M2 in E. lynx, which suggest that the developmental programs required for the establishment of serially homologous characters may never really be lost so long as a single instance of the character remains-thus the gain and loss and regain of serially homologous characters, such mammalian molars, may be developmentally and evolutionarily "simple."


Asunto(s)
Lynx , Animales , Filogenia , Dentición , Mamíferos
7.
J Exp Zool B Mol Dev Evol ; 340(8): 486-495, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-34125492

RESUMEN

An enduring problem in biology is explaining how novel functions of genes originated and how those functions diverge between species. Despite detailed studies on the functional evolution of a few proteins, the molecular mechanisms by which protein functions have evolved are almost entirely unknown. Here, we show that a polyalanine tract in the homeodomain transcription factor HoxA11 arose in the stem-lineage of mammals and functions as an autonomous repressor module by physically interacting with the PAH domains of SIN3 proteins. These results suggest that long polyalanine tracts, which are common in transcription factors and often associated with disease, may tend to function as repressor domains and can contribute to the diversification of transcription factor functions despite the deleterious consequences of polyalanine tract expansion.


Asunto(s)
Péptidos , Factores de Transcripción , Animales , Factores de Transcripción/genética , Péptidos/genética , Péptidos/metabolismo , Regulación de la Expresión Génica , Mamíferos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
8.
Elife ; 112022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36480266

RESUMEN

The risk of developing cancer is correlated with body size and lifespan within species, but there is no correlation between cancer and either body size or lifespan between species indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Previously we showed that several large bodied Afrotherian lineages evolved reduced intrinsic cancer risk, particularly elephants and their extinct relatives (Proboscideans), coincident with pervasive duplication of tumor suppressor genes (Vazquez and Lynch, 2021). Unexpectedly, we also found that Xenarthrans (sloths, armadillos, and anteaters) evolved very low intrinsic cancer risk. Here, we show that: (1) several Xenarthran lineages independently evolved large bodies, long lifespans, and reduced intrinsic cancer risk; (2) the reduced cancer risk in the stem lineages of Xenarthra and Pilosa coincided with bursts of tumor suppressor gene duplications; (3) cells from sloths proliferate extremely slowly while Xenarthran cells induce apoptosis at very low doses of DNA damaging agents; and (4) the prevalence of cancer is extremely low Xenarthrans, and cancer is nearly absent from armadillos. These data implicate the duplication of tumor suppressor genes in the evolution of remarkably large body sizes and decreased cancer risk in Xenarthrans and suggest they are a remarkably cancer-resistant group of mammals.


Asunto(s)
Elefantes , Neoplasias , Perezosos , Xenarthra , Animales , Xenarthra/genética , Perezosos/genética , Armadillos/genética , Filogenia , Mamíferos/genética , Elefantes/genética , Genes Supresores de Tumor , Neoplasias/epidemiología , Neoplasias/genética , Evolución Biológica
9.
Genome Biol Evol ; 14(12)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36423206

RESUMEN

Gene expression evolution underlies the origin, divergence, and conservation of biological characters including cell-types, tissues, and organ systems. Previously we showed that large-scale gene expression changes in decidual stromal cells (DSCs) contributed to the origins of pregnancy in eutherians and the divergence of pregnancy traits in primates and that transposable elements likely contributed to these gene expression changes. Here we show that two large waves of TEs remodeled the transcriptome and regulatory landscape of DSCs, including a major wave in primates. Genes nearby TE-derived regulatory elements are among the most progesterone responsive in the genome and play essential roles in orchestrating progesterone responsiveness and the core function of decidual cells by donating progesterone receptor binding sites to the genome. We tested the regulatory abilities of 89 TE consensus sequences and found that nearly all of them acted as repressors in mammalian cells, but treatment with a histone deacetylase inhibitor unmasked latent enhancer functions. These data indicate that TEs have played an important role in the development, evolution, and function of primate DSCs and suggest a two-step model in which latent enhancer functions of TEs are unmasked after they lose primary repressor functions.


Asunto(s)
Elementos Transponibles de ADN , Progesterona , Elementos Transponibles de ADN/genética , Células del Estroma
10.
Elife ; 112022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35770963

RESUMEN

Structural and physiological changes in the female reproductive system underlie the origins of pregnancy in multiple vertebrate lineages. In mammals, the glandular portion of the lower reproductive tract has transformed into a structure specialized for supporting fetal development. These specializations range from relatively simple maternal nutrient provisioning in egg-laying monotremes to an elaborate suite of traits that support intimate maternal-fetal interactions in Eutherians. Among these traits are the maternal decidua and fetal component of the placenta, but there is considerable uncertainty about how these structures evolved. Previously, we showed that changes in uterine gene expression contributes to several evolutionary innovations during the origins of pregnancy (Mika et al., 2021b). Here, we reconstruct the evolution of entire transcriptomes ('ancestral transcriptome reconstruction') and show that maternal gene expression profiles are correlated with degree of placental invasion. These results indicate that an epitheliochorial-like placenta evolved early in the mammalian stem-lineage and that the ancestor of Eutherians had a hemochorial placenta, and suggest maternal control of placental invasiveness. These data resolve major transitions in the evolution of pregnancy and indicate that ancestral transcriptome reconstruction can be used to study the function of ancestral cell, tissue, and organ systems.


Asunto(s)
Placenta , Transcriptoma , Animales , Femenino , Mamíferos/genética , Filogenia , Placenta/fisiología , Embarazo , Reproducción
11.
Front Physiol ; 13: 772313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464086

RESUMEN

Mitochondrial malfunction is a hallmark of many diseases, including neurodegenerative disorders, cardiovascular and lung diseases, and cancers. We previously found that alveolar progenitor cells, which are more resistant to cigarette smoke-induced injury than the other cells of the lung parenchyma, upregulate the mtDNA-encoded small non-coding RNA mito-ncR-805 after exposure to smoke. The mito-ncR-805 acts as a retrograde signal between the mitochondria and the nucleus. Here, we identified a region of mito-ncR-805 that is conserved in the mammalian mitochondrial genomes and generated shorter versions of mouse and human transcripts (mmu-CR805 and hsa-LDL1, respectively), which differ in a few nucleotides and which we refer to as the "functional bit". Overexpression of mouse and human functional bits in either the mouse or the human lung epithelial cells led to an increase in the activity of the Krebs cycle and oxidative phosphorylation, stabilized the mitochondrial potential, conferred faster cell division, and lowered the levels of proapoptotic pseudokinase, TRIB3. Both oligos, mmu-CR805 and hsa-LDL1 conferred cross-species beneficial effects. Our data indicate a high degree of evolutionary conservation of retrograde signaling via a functional bit of the D-loop transcript, mito-ncR-805, in the mammals. This emphasizes the importance of the pathway and suggests a potential to develop this functional bit into a therapeutic agent that enhances mitochondrial bioenergetics.

12.
Curr Biol ; 32(4): R158-R160, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35231407

RESUMEN

How new characters originate is a major question in evolution. Ricefish have evolved a novel tissue enabling females to brood eggs externally. A new study finds that genes involved in formation of this novelty also play a role in inflammation, suggesting stress can trigger the origin of novelty.


Asunto(s)
Evolución Biológica , Femenino , Humanos
13.
Genome Biol Evol ; 13(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34792580

RESUMEN

There are many costs associated with increased body size and longevity in animals, including the accumulation of genotoxic and cytotoxic damage that comes with having more cells and living longer. Yet, some species have overcome these barriers and have evolved remarkably large body sizes and long lifespans, sometimes within a narrow window of evolutionary time. Here, we demonstrate through phylogenetic comparative analysis that multiple turtle lineages, including Galapagos giant tortoises, concurrently evolved large bodies, long lifespans, and reduced cancer risk. We also show through comparative genomic analysis that Galapagos giant tortoises have gene duplications related to longevity and tumor suppression. To examine the molecular basis underlying increased body size and lifespan in turtles, we treated cell lines from multiple species, including Galapagos giant tortoises, with drugs that induce different types of cytotoxic stress. Our results indicate that turtle cells, in general, are resistant to oxidative stress related to aging, whereas Galapagos giant tortoise cells, specifically, are sensitive to endoplasmic reticulum stress, which may give this species an ability to mitigate the effects of cellular stress associated with increased body size and longevity.


Asunto(s)
Tortugas , Animales , Tamaño Corporal/genética , Duplicación de Gen , Fenotipo , Filogenia , Tortugas/genética
14.
Elife ; 102021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34623259

RESUMEN

Evolutionary changes in the anatomy and physiology of the female reproductive system underlie the origins and diversification of pregnancy in Eutherian ('placental') mammals. This developmental and evolutionary history constrains normal physiological functions and biases the ways in which dysfunction contributes to reproductive trait diseases and adverse pregnancy outcomes. Here, we show that gene expression changes in the human endometrium during pregnancy are associated with the evolution of human-specific traits and pathologies of pregnancy. We found that hundreds of genes gained or lost endometrial expression in the human lineage. Among these are genes that may contribute to human-specific maternal-fetal communication (HTR2B) and maternal-fetal immunotolerance (PDCD1LG2) systems, as well as vascular remodeling and deep placental invasion (CORIN). These data suggest that explicit evolutionary studies of anatomical systems complement traditional methods for characterizing the genetic architecture of disease. We also anticipate our results will advance the emerging synthesis of evolution and medicine ('evolutionary medicine') and be a starting point for more sophisticated studies of the maternal-fetal interface. Furthermore, the gene expression changes we identified may contribute to the development of diagnostics and interventions for adverse pregnancy outcomes.


Pregnancy is a complicated process. It has three phases: the body recognizes the embryo, it maintains the pregnancy, and finally, it induces labor. These stages happen in all mammals, but the details are different in humans. Human pregnancy and labor last longer. We menstruate. Our placentas invade deeper into the uterus, and the cues that signal pregnancy is done and induce labor are different than in most other mammals. We are also more likely to have pregnancy complications, including infertility, a dangerous rise in blood pressure called preeclampsia, and premature birth. The reasons for these differences are unknown. Human pregnancy relies on close communication between the placenta and the uterus. The immune system must allow the placenta to grow large enough to support the developing embryo, and blood vessels need to adapt to supply gases and nutrients and to remove waste. Understanding how the genes used by the human uterus are different to those used in other species could help explain why human pregnancies are so unusual. Mika, Marinic et al. compared the genes used by the pregnant human uterus to those used in 32 other species, including monkeys, marsupials and other mammals, birds, and reptiles. The analysis revealed that the humans use almost a thousand genes that other animals do not. These genes have roles in the invasion of the placenta, the growth of blood vessels, and control of the immune system. Several have links to the hormone serotonin, which had not been connected with the uterus before. Mika, Marinic et al. suggest that it might control the length of pregnancy, the timing of labor, and communication between parent and baby. The genes identified here provide a starting point for further investigation of human pregnancy. In the future, this may help to prevent or treat infertility, preeclampsia, or premature birth. A possible next step is to examine our closest living relatives, the great apes. Performing similar experiments using tissues or cells from chimpanzees, gorillas, and orangutans could reveal more about the genes unique to human pregnancy.


Asunto(s)
Complicaciones del Embarazo/genética , Embarazo/genética , Adulto , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Humanos , Resultado del Embarazo/genética
15.
Cell Rep ; 35(7): 109138, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34010658

RESUMEN

Various human diseases and pregnancy-related disorders reflect endometrial dysfunction. However, rodent models do not share fundamental biological processes with the human endometrium, such as spontaneous decidualization, and no existing human cell cultures recapitulate the cyclic interactions between endometrial stromal and epithelial compartments necessary for decidualization and implantation. Here we report a protocol differentiating human pluripotent stem cells into endometrial stromal fibroblasts (PSC-ESFs) that are highly pure and able to decidualize. Coculture of PSC-ESFs with placenta-derived endometrial epithelial cells generated organoids used to examine stromal-epithelial interactions. Cocultures exhibited specific endometrial markers in the appropriate compartments, organization with cell polarity, and hormone responsiveness of both cell types. Furthermore, cocultures recapitulate a central feature of the human decidua by cyclically responding to hormone withdrawal followed by hormone retreatment. This advance enables mechanistic studies of the cyclic responses that characterize the human endometrium.


Asunto(s)
Técnicas de Cocultivo/métodos , Decidua/metabolismo , Endometrio/metabolismo , Fibroblastos/metabolismo , Células Madre Pluripotentes/metabolismo , Células del Estroma/metabolismo , Femenino , Humanos
16.
Elife ; 102021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522483

RESUMEN

The developmental origins and evolutionary histories of cell types, tissues, and organs contribute to the ways in which their dysfunction produces disease. In mammals, the nature, development and evolution of maternal-fetal interactions likely influence diseases of pregnancy. Here we show genes that evolved expression at the maternal-fetal interface in Eutherian mammals play essential roles in the evolution of pregnancy and are associated with immunological disorders and preterm birth. Among these genes is HAND2, a transcription factor that suppresses estrogen signaling, a Eutherian innovation allowing blastocyst implantation. We found dynamic HAND2 expression in the decidua throughout the menstrual cycle and pregnancy, gradually decreasing to a low at term. HAND2 regulates a distinct set of genes in endometrial stromal fibroblasts including IL15, a cytokine also exhibiting dynamic expression throughout the menstrual cycle and gestation, promoting migration of natural killer cells and extravillous cytotrophoblasts. We demonstrate that HAND2 promoter loops to an enhancer containing SNPs implicated in birth weight and gestation length regulation. Collectively, these data connect HAND2 expression at the maternal-fetal interface with evolution of implantation and gestational regulation, and preterm birth.


Asunto(s)
Evolución Biológica , Euterios/genética , Euterios/fisiología , Embarazo/fisiología , Factores de Transcripción/metabolismo , Animales , Decidua/metabolismo , Implantación del Embrión/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Ciclo Menstrual/fisiología , Factores de Transcripción/genética , Transcriptoma
17.
Elife ; 102021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33513090

RESUMEN

The risk of developing cancer is correlated with body size and lifespan within species. Between species, however, there is no correlation between cancer and either body size or lifespan, indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Elephants and their relatives (Proboscideans) are a particularly interesting lineage for the exploration of mechanisms underlying the evolution of augmented cancer resistance because they evolved large bodies recently within a clade of smaller-bodied species (Afrotherians). Here, we explore the contribution of gene duplication to body size and cancer risk in Afrotherians. Unexpectedly, we found that tumor suppressor duplication was pervasive in Afrotherian genomes, rather than restricted to Proboscideans. Proboscideans, however, have duplicates in unique pathways that may underlie some aspects of their remarkable anti-cancer cell biology. These data suggest that duplication of tumor suppressor genes facilitated the evolution of increased body size by compensating for decreasing intrinsic cancer risk.


From the gigantic blue whale to the minuscule bumblebee bat, animals come in all shapes and sizes. Any species can develop cancer, but some are more at risk than others. In theory, if every cell has the same probability of becoming cancerous, then bigger animals should get cancer more often since they have more cells than smaller ones. Amongst the same species, this relationship is true: taller people and bigger dogs have a greater cancer risk than their smaller counterparts. Yet this correlation does not hold when comparing between species: remarkably large creatures, like elephants and whales, are not more likely to have cancer than any other animal. But how have these gigantic animals evolved to be at lower risk for the disease? To investigate, Vazquez and Lynch compared the cancer risk and the genetic information of a diverse group of closely related animals with different body sizes. This included elephants, woolly mammoths and mastodons as well as their small relatives, the manatees, armadillos, and marmot-sized hyraxes. Examining these species' genomes revealed that, during evolution, elephants had acquired extra copies of 'tumour suppressor genes' which can sense and repair the genetic and cellular damages that turn healthy cells into tumours. This allowed the species to evolve large bodies while lowering their risk of cancer. Further studies could investigate whether other gigantic animals evolved similar ways to shield themselves from cancer; these could also examine precisely how having additional copies of cancer-protecting genes helps reduce cancer risk, potentially paving the way for new approaches to treat or prevent the disease.


Asunto(s)
Afrotheria/genética , Evolución Biológica , Tamaño Corporal , Duplicación de Gen , Genes Supresores de Tumor , Neoplasias/veterinaria , Animales , Evolución Molecular , Neoplasias/etiología
18.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268355

RESUMEN

While a genetic component of preterm birth (PTB) has long been recognized and recently mapped by genome-wide association studies (GWASs), the molecular determinants underlying PTB remain elusive. This stems in part from an incomplete availability of functional genomic annotations in human cell types relevant to pregnancy and PTB. We generated transcriptome (RNA-seq), epigenome (ChIP-seq of H3K27ac, H3K4me1, and H3K4me3 histone modifications), open chromatin (ATAC-seq), and chromatin interaction (promoter capture Hi-C) annotations of cultured primary decidua-derived mesenchymal stromal/stem cells and in vitro differentiated decidual stromal cells and developed a computational framework to integrate these functional annotations with results from a GWAS of gestational duration in 56,384 women. Using these resources, we uncovered additional loci associated with gestational duration and target genes of associated loci. Our strategy illustrates how functional annotations in pregnancy-relevant cell types aid in the experimental follow-up of GWAS for PTB and, likely, other pregnancy-related conditions.


Asunto(s)
Nacimiento Prematuro , Transcriptoma , Cromatina/genética , Cromatina/metabolismo , Decidua , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Masculino , Embarazo , Nacimiento Prematuro/genética , Nacimiento Prematuro/metabolismo , Células del Estroma
19.
Placenta ; 101: 75-79, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32937244

RESUMEN

A limitation of current methods for the generation of endometrial gland organoids is their reliance on decidua isolated from endometrial biopsies or elective abortion. Here we report the establishment of endometrial gland organoids from decidua isolated from term placental membranes. These organoids express typical markers of glandular epithelia such as E-cadherin, Laminin and Cytokeratin 7, and can be propagated in cell culture through multiple passages. Additionally, we identified potential survival factors for the co-culture of organoids and endometrial stromal fibroblasts. These modifications facilitate the generation of patient-specific endometrial gland organoids with known pregnancy outcomes.


Asunto(s)
Endometrio , Organoides , Placenta , Técnicas de Cultivo de Tejidos , Femenino , Humanos , Embarazo
20.
Proc Natl Acad Sci U S A ; 117(38): 23270-23279, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32661177

RESUMEN

Neuronal networks are the standard heuristic model today for describing brain activity associated with animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of networked activities in the brain-the gene regulatory network (GRN)-that orchestrates expression levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights into the relationships between these two types of networks and discuss their interplay in spatial as well as temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-related GRNs by drawing inspiration from the rich literature on GRNs related to animal development, comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a third timescale, which is believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization and cis-regulatory architecture underlies this special class of behavior, and review literature that suggests an affirmative answer.


Asunto(s)
Conducta , Encéfalo/fisiología , Redes Reguladoras de Genes , Animales , Encéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA