Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 127
1.
Adv Mater ; : e2404830, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38895941

mRNA vaccines for cancer immunotherapy are commonly delivered using lipid nanoparticles (LNPs), which, when administered intravenously, may accumulate in the liver, potentially limiting their therapeutic efficacy. To overcome this challenge, the study introduces an oral mRNA vaccine formulation tailored for efficient uptake by immune cells in the gastrointestinal (GI) tract, known for its high concentration of immune cells, including dendritic cells (DCs). This formulation comprises mRNA complexed with ß-glucans (ßGlus), a potential adjuvant for vaccines, encapsulated within LNPs (ßGlus/mRNA@LNPs). The ßGlus/mRNA complexes within the small compartments of LNPs demonstrate a distinctive ability to partially dissociate and re-associate, responding to pH changes, effectively shielding mRNA from degradation in the harsh GI environment. Upon oral administration to tumor-bearing mice, ßGlus/mRNA@LNPs are effectively taken up by intestinal DCs and local non-immune cells, bypassing potential liver accumulation. This initiates antigen-specific immune responses through successful mRNA translation, followed by drainage into the mesenteric lymph nodes to stimulate T cells and trigger specific adaptive immune responses, ultimately enhancing antitumor effects. Importantly, the vaccine demonstrates safety, with no significant inflammatory reactions observed. In conclusion, the potential of oral ßGlus/mRNA@LNPs delivery presents a promising avenue in cancer immunotherapy, offering needle-free and user-friendly administration for widespread adoption and self-administration. This article is protected by copyright. All rights reserved.

2.
Biochem Biophys Res Commun ; 672: 81-88, 2023 09 10.
Article En | MEDLINE | ID: mdl-37343318

CP74 is an engineered circular permutant of a deep trefoil knotted SpoU-TrmD (SPOUT) RNA methyl transferase protein YbeA from E. coli. We have previously established that the circular permutation unties the knotted topology of YbeA and CP74 forms a domain-swapped dimer with a large dimeric interface of ca. 4600 Å2. To understand the impact of domain-swapping and the newly formed hinge region joining the two folded domains on the folding and stability of CP74, the five equally spaced tryptophan residues were individually substituted into phenylalanine to monitor their conformational and stability changes by a battery of biophysical tools. Far-UV circular dichroism, intrinsic fluorescence, and small-angle X-ray scattering dictated minimal global conformational perturbations to the native structures in the tryptophan variants. The structures of the tryptophan variants also showed the conservation of the domain-swapped ternary structure with the exception that the W72F exhibited significant asymmetry in the α-helix 5. Comparative global thermal and chemical stability analyses indicated the pivotal role of W100 in the folding of CP74 followed by W19 and W72. Solution-state NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry further revealed the accumulation of a native-like intermediate state in which the hinge region made important contributions to maintain the domain-swapped ternary structure of CP74.


Escherichia coli , Protein Folding , Circular Dichroism , Kinetics , Proteins , Tryptophan
3.
Oxid Med Cell Longev ; 2023: 3479688, 2023.
Article En | MEDLINE | ID: mdl-36820406

Pancreatic cancer has higher incidence and mortality rates worldwide. PW06 [(E)-3-(9-ethyl-9H-carbazol-3-yl)-1-(2,5-dimethoxyphenyl) prop-2-en-1-one] is a carbazole derivative containing chalcone moiety which was designed for inhibiting tumorigenesis in human pancreatic cancer. This study is aimed at investigating PW06-induced anticancer effects in human pancreatic cancer MIA PaCa-2 cells in vitro. The results showed PW06 potent antiproliferative/cytotoxic activities and induced cell morphological changes in a human pancreatic cancer cell line (MIA PaCa-2), and these effects are concentration-dependent (IC50 is 0.43 µM). Annexin V and DAPI staining assays indicated that PW06 induced apoptotic cell death and DNA condensation. Western blotting indicated that PW06 increased the proapoptotic proteins such as Bak and Bad but decreased the antiapoptotic protein such as Bcl-2 and Bcl-xL. Moreover, PW06 increased the active form of caspase-8, caspase-9, and caspase-3, PARP, releasing cytochrome c, AIF, and Endo G from mitochondria in MIA PaCa-2 cells. Confocal laser microscopy assay also confirmed that PW06 increased Bak and decreased Bcl-xL. Also, the cells were pretreated with inhibitors of caspase-3, caspase-8, and caspase-9 and then were treated with PW06, resulting in increased viable cell number compared to PW06 treated only. Furthermore, PW06 showed a potent binding ability with hydrophobic interactions in the core site of the Fas-Fas death domains (FADD). In conclusion, PW06 can potent binding ability to the Fas-FADD which led to antiproliferative, cytotoxic activities, and apoptosis induction accompanied by the caspase-dependent and mitochondria-dependent pathways in human pancreatic cancer MIA PaCa-2 cells.


Antineoplastic Agents , Pancreatic Neoplasms , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Caspases/metabolism , Cell Line, Tumor , Fas-Associated Death Domain Protein/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
4.
Comput Struct Biotechnol J ; 21: 185-201, 2023.
Article En | MEDLINE | ID: mdl-36582435

Circular permutation (CP) is a protein sequence rearrangement in which the amino- and carboxyl-termini of a protein can be created in different positions along the imaginary circularized sequence. Circularly permutated proteins usually exhibit conserved three-dimensional structures and functions. By comparing the structures of circular permutants (CPMs), protein research and bioengineering applications can be approached in ways that are difficult to achieve by traditional mutagenesis. Most current CP detection algorithms depend on structural information. Because there is a vast number of proteins with unknown structures, many CP pairs may remain unidentified. An efficient sequence-based CP detector will help identify more CP pairs and advance many protein studies. For instance, some hypothetical proteins may have CPMs with known functions and structures that are informative for functional annotation, but existing structure-based CP search methods cannot be applied when those hypothetical proteins lack structural information. Despite the considerable potential for applications, sequence-based CP search methods have not been well developed. We present a sequence-based method, SeqCP, which analyzes normal and duplicated sequence alignments to identify CPMs and determine candidate CP sites for proteins. SeqCP was trained by data obtained from the Circular Permutation Database and tested with nonredundant datasets from the Protein Data Bank. It shows high reliability in CP identification and achieves an AUC of 0.9. SeqCP has been implemented into a web server available at: http://pcnas.life.nthu.edu.tw/SeqCP/.

5.
Biomedicines ; 9(12)2021 Dec 02.
Article En | MEDLINE | ID: mdl-34944632

Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent non-viral sexually transmitted infection worldwide. Metronidazole (MTZ) is the mainstay of anti-trichomonal chemotherapy; however, drug resistance has become an increasingly worrying issue. Additionally, the molecular events of MTZ-induced cell death in T. vaginalis remain elusive. To gain insight into the differential expression of genes related to MTZ resistance and cell death, we conducted RNA-sequencing of three paired MTZ-resistant (MTZ-R) and MTZ-sensitive (MTZ-S) T. vaginalis strains treated with or without MTZ. Comparative transcriptomes analysis identified that several putative drug-resistant genes were exclusively upregulated in different MTZ-R strains, such as ATP-binding cassette (ABC) transporters and multidrug resistance pumps. Additionally, several shared upregulated genes among all the MTZ-R transcriptomes were not previously identified in T. vaginalis, such as 5'-nucleotidase surE and Na+-driven multidrug efflux pump, which are a potential stress response protein and a multidrug and toxic compound extrusion (MATE)-like protein, respectively. Functional enrichment analysis revealed that purine and pyrimidine metabolisms were suppressed in MTZ-S parasites upon drug treatment, whereas the endoplasmic reticulum-associated degradation (ERAD) pathway, proteasome, and ubiquitin-mediated proteolysis were strikingly activated, highlighting the novel pathways responsible for drug-induced stress. Our work presents the most detailed analysis of the transcriptional changes and the regulatory networks associated with MTZ resistance and MTZ-induced signaling, providing insights into MTZ resistance and cell death mechanisms in trichomonads.

6.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article En | MEDLINE | ID: mdl-34681803

A neuropeptide (Sco-CHH-L), belonging to the crustacean hyperglycemic hormone (CHH) superfamily and preferentially expressed in the pericardial organs (POs) of the mud crab Scylla olivacea, was functionally and structurally studied. Its expression levels were significantly higher than the alternative splice form (Sco-CHH) in the POs, and increased significantly after the animals were subjected to a hypo-osmotic stress. Sco-CHH-L, but not Sco-CHH, significantly stimulated in vitro the Na+, K+-ATPase activity in the posterior (6th) gills. Furthermore, the solution structure of Sco-CHH-L was resolved using nuclear magnetic resonance spectroscopy, revealing that it has an N-terminal tail, three α-helices (α2, Gly9-Asn28; α3, His34-Gly38; and α5, Glu62-Arg72), and a π-helix (π4, Cys43-Tyr54), and is structurally constrained by a pattern of disulfide bonds (Cys7-Cys43, Cys23-Cys39, and Cys26-Cys52), which is characteristic of the CHH superfamily-peptides. Sco-CHH-L is topologically most similar to the molt-inhibiting hormone from the Kuruma prawn Marsupenaeus japonicus with a backbone root-mean-square-deviation of 3.12 Å. Ten residues of Sco-CHH-L were chosen for alanine-substitution, and the resulting mutants were functionally tested using the gill Na+, K+-ATPase activity assay, showing that the functionally important residues (I2, F3, E45, D69, I71, and G73) are located at either end of the sequence, which are sterically close to each other and presumably constitute the receptor binding sites. Sco-CHH-L was compared with other members of the superfamily, revealing a folding pattern, which is suggested to be common for the crustacean members of the superfamily, with the properties of the residues constituting the presumed receptor binding sites being the major factors dictating the ligand-receptor binding specificity.


Arthropod Proteins , Brachyura , Invertebrate Hormones , Nerve Tissue Proteins , Neuropeptides , Receptors, Peptide/metabolism , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Brachyura/genetics , Brachyura/metabolism , Invertebrate Hormones/chemistry , Invertebrate Hormones/genetics , Invertebrate Hormones/metabolism , Models, Molecular , Multigene Family , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuropeptides/chemistry , Neuropeptides/genetics , Neuropeptides/metabolism , Pericardium/metabolism , Protein Binding , Protein Domains , Structure-Activity Relationship
7.
Int J Mol Sci ; 22(12)2021 Jun 17.
Article En | MEDLINE | ID: mdl-34204506

Ergosta-7, 9 (11), 22-trien-3ß-ol (EK100) was isolated from Cordyceps militaris, which has been used as a traditional anti-inflammatory medicine. EK100 has been reported to attenuate inflammatory diseases, but its anti-inflammatory mechanism is still unclear. We were the first to investigate the effect of EK100 on the Toll-like receptor 4 (TLR4)/nuclear factor of the κ light chain enhancer of B cells (NF-κB) signaling in the lipopolysaccharide (LPS)-stimulated RAW264.7 cells and the green fluorescent protein (GFP)-labeled NF-κB reporter gene of Drosophila. EK100 suppressed the release of the cytokine and attenuated the mRNA and protein expression of pro-inflammatory mediators. EK100 inhibited the inhibitor kappa B (IκB)/NF-κB signaling pathway. EK100 also inhibited phosphatidylinositol-3-kinase (PI3K)/Protein kinase B (Akt) signal transduction. Moreover, EK100 interfered with LPS docking to the LPS-binding protein (LBP), transferred to the cluster of differentiation 14 (CD14), and bonded to TLR4/myeloid differentiation-2 (MD-2) co-receptors. Compared with the TLR4 antagonist, resatorvid (CLI-095), and dexamethasone (Dexa), EK100 suppressed the TLR4/AKT signaling pathway. In addition, we also confirmed that EK100 attenuated the GFP-labeled NF-κB reporter gene expression in Drosophila. In summary, EK100 might alter LPS docking to LBP, CD14, and TLR4/MD-2 co-receptors, and then it suppresses the TLR4/NF-κB inflammatory pathway in LPS-stimulated RAW264.7 cells and Drosophila.


Anti-Inflammatory Agents/pharmacology , Drosophila/metabolism , Lipopolysaccharide Receptors/metabolism , Lymphocyte Antigen 96/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharide Receptors/chemistry , Lipopolysaccharides/chemistry , Lipopolysaccharides/immunology , Lymphocyte Antigen 96/chemistry , Macrophages/immunology , Macrophages/metabolism , Mice , Models, Molecular , Molecular Conformation , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , Protein Binding , Structure-Activity Relationship , Toll-Like Receptor 4/chemistry
8.
Oncogene ; 40(28): 4675-4685, 2021 07.
Article En | MEDLINE | ID: mdl-34140643

Long non-coding RNAs (lncRNA) play crucial roles in hepatocellular carcinoma (HCC) progression. However, the specific functions of lncRNAs in alternative splicing (AS) and the metastatic cascade in liver cancer remain largely unclear. In this study, we identified a novel lncRNA, LINC01348, which was significantly downregulated in HCC and correlated with survival functions in HCC patients. Ectopic expression of LINC01348 induced marked inhibition of cell growth, and metastasis in vitro and in vivo. Conversely, these phenotypes were reversed upon knockdown of LINC01348. Mechanistically, LINC01348 complexed with splicing factor 3b subunit 3 (SF3B3) acted as a modulator of EZH2 pre-mRNA AS, and induced alterations in JNK/c-Jun activity and expression of Snail. Notably, C-terminal truncated HBx (Ct-HBx) negatively regulated LINC01348 through c-Jun signaling. Our data collectively highlight those novel regulatory associations involving LINC01348/SF3B3/EZH2/JNK/c-Jun/Snail are an important determinant of metastasis in HCC cells and support the potential utility of targeting LINC01348 as a therapeutic strategy for HCC.


Carcinoma, Hepatocellular , Alternative Splicing , Cell Cycle , Cell Proliferation , Liver Neoplasms
9.
Antioxidants (Basel) ; 10(3)2021 Feb 27.
Article En | MEDLINE | ID: mdl-33673673

Imperatorin (IMP) could downregulate several inflammatory transcription factor signaling pathways. Some studies have pointed out that IMP could interfere with toll-like receptor 4 (TLR4) signaling. This study evaluates how IMP interferes with the TLR4 co-receptors signaling through the protein-ligand docking model, Western blotting, immunofluorescence (IF), and atomic force microscopy (AFM) assays in lipopolysaccharide (LPS) stimulated macrophage-like RAW264.7 cells in vitro. The results of the protein-ligand docking demonstrate that IMP interferes with LPS binding to the LPS-binding protein (LBP), the cluster of differentiation 14 (CD14), and the toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) co-receptors in LPS-stimulated RAW264.7 cells. Compared with TLR4 antagonist CLI-095 or dexamethasone, IMP could suppress the protein expressions of LBP, CD14, and TLR4/MD-2 in LPS-stimulated cells. Furthermore, the three-dimensional (3D) image assay of the AFM showed IMP could prevent the LPS-induced morphological change in RAW264.7 cells. Additionally, IMP could activate the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and it increased the antioxidative protein expression of heme oxygenase-1 (HO-1), superoxidase dismutase (SOD), and catalase (CAT). Our results are the first to reveal that the anti-inflammatory effect of IMP interferes with LPS binding to TLR4 co-receptor signaling and activates the antioxidative Nrf2 signaling pathway.

10.
Int J Mol Sci ; 21(20)2020 Oct 12.
Article En | MEDLINE | ID: mdl-33053837

Cysteine-based protein tyrosine phosphatases (Cys-based PTPs) perform dephosphorylation to regulate signaling pathways in cellular responses. The hydrogen bonding network in their active site plays an important conformational role and supports the phosphatase activity. Nearly half of dual-specificity phosphatases (DUSPs) use three conserved residues, including aspartate in the D-loop, serine in the P-loop, and asparagine in the N-loop, to form the hydrogen bonding network, the D-, P-, N-triloop interaction (DPN-triloop interaction). In this study, DUSP22 is used to investigate the importance of the DPN-triloop interaction in active site formation. Alanine mutations and somatic mutations of the conserved residues, D57, S93, and N128 substantially decrease catalytic efficiency (kcat/KM) by more than 102-fold. Structural studies by NMR and crystallography reveal that each residue can perturb the three loops and induce conformational changes, indicating that the hydrogen bonding network aligns the residues in the correct positions for substrate interaction and catalysis. Studying the DPN-triloop interaction reveals the mechanism maintaining phosphatase activity in N-loop-containing PTPs and provides a foundation for further investigation of active site formation in different members of this protein class.


Binding Sites , Catalytic Domain , Dual-Specificity Phosphatases/chemistry , Mitogen-Activated Protein Kinase Phosphatases/chemistry , Models, Molecular , Protein Interaction Domains and Motifs , Protein Tyrosine Phosphatases/chemistry , Amino Acid Sequence , Amino Acids , Conserved Sequence , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Humans , Hydrogen Bonding , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Mutation , Protein Binding , Protein Conformation , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism
11.
Mar Drugs ; 18(8)2020 Aug 09.
Article En | MEDLINE | ID: mdl-32784874

Tilapia piscidin (TP) 4 is an antimicrobial peptide derived from Nile tilapia (Oreochromis niloticus), which shows broad-spectrum antibacterial activity and excellent cancer-killing ability in vitro and in vivo. Like many other antimicrobial peptides, TP4 treatment causes mitochondrial toxicity in cancer cells. However, the molecular mechanisms underlying TP4 targeting of mitochondria remain unclear. In this study, we used a pull-down assay on A549 cell lysates combined with LC-MS/MS to discover that TP4 targets adenine nucleotide translocator (ANT) 2, a protein essential for adenine nucleotide exchange across the inner membrane. We further showed that TP4 accumulates in mitochondria and colocalizes with ANT2. Moreover, molecular docking studies showed that the interaction requires Phe1, Ile2, His3, His4, Ser11, Lys14, His17, Arg21, Arg24 and Arg25 residues in TP4 and key residues within the cavity of ANT2. These findings suggest a mechanism by which TP4 may induce mitochondrial dysfunction to disrupt cellular energy metabolism.


Adenine Nucleotide Translocator 2/drug effects , Antimicrobial Cationic Peptides/pharmacology , Antineoplastic Agents/pharmacology , Cichlids/metabolism , Fish Proteins/pharmacology , Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Neoplasms/drug therapy , A549 Cells , Adenine Nucleotide Translocator 2/metabolism , Animals , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/metabolism , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/metabolism , Energy Metabolism/drug effects , Fish Proteins/isolation & purification , Fish Proteins/metabolism , Humans , MCF-7 Cells , Microscopy, Confocal , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Molecular Docking Simulation , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding
12.
Commun Biol ; 3(1): 441, 2020 08 14.
Article En | MEDLINE | ID: mdl-32796911

Acetyl coenzyme A (Ac-CoA)-dependent N-acetylation is performed by arylalkylamine N-acetyltransferase (AANAT) and is important in many biofunctions. AANAT catalyzes N-acetylation through an ordered sequential mechanism in which cofactor (Ac-CoA) binds first, with substrate binding afterward. No ternary structure containing AANAT, cofactor, and substrate was determined, meaning the details of substrate binding and product release remain unclear. Here, two ternary complexes of dopamine N-acetyltransferase (Dat) before and after N-acetylation were solved at 1.28 Å and 1.36 Å resolution, respectively. Combined with the structures of Dat in apo form and Ac-CoA bound form, we addressed each stage in the catalytic cycle. Isothermal titration calorimetry (ITC), crystallography, and nuclear magnetic resonance spectroscopy (NMR) were utilized to analyze the product release. Our data revealed that Ac-CoA regulates the conformational properties of Dat to form the catalytic site and substrate binding pocket, while the release of products is facilitated by the binding of new Ac-CoA.


Acetyl Coenzyme A/metabolism , Arylalkylamine N-Acetyltransferase/metabolism , Biocatalysis , Insecta/enzymology , Acetylation , Animals , Arylalkylamine N-Acetyltransferase/chemistry , Biogenic Monoamines/chemistry , Biogenic Monoamines/metabolism , Catalytic Domain , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Substrate Specificity
13.
Article En | MEDLINE | ID: mdl-33488743

Diabetes is associated with the development of myocardial fibrosis, which is related to various cardiac diseases. Cafestol, one of the active ingredients in coffee, has been reported to exert biological effects. However, whether cafestol can ameliorate diabetes-induced cardiac fibrosis remains unknown. The aim of this study was to evaluate the effects of cafestol on cardiac fibrosis in high-glucose-treated cardiac fibroblasts and streptozocin- (STZ-) induced diabetic rats. Rat cardiac fibroblasts were cultured in high-glucose (25 mM) media in the absence or presence of cafestol, and the changes in collagen synthesis, transforming growth factor-ß1 (TGF-ß1) production, and related signaling molecules were assessed on the basis of 3H-proline incorporation, enzyme-linked immunosorbent assay, and western blotting. Cardiac fibroblasts exposed to high-glucose conditions exhibited increased collagen synthesis, TGF-ß1 production, and Smad2/3 phosphorylation, and these effects were mitigated by cafestol treatment. Furthermore, cafestol increased the translocation of nuclear factor erythroid 2-related factor 2 and increased the expression of heme oxygenase-1. The results of molecular docking analysis suggested a selective interaction of cafestol with Kelch-like ECH-associated protein 1. The rats with untreated STZ-induced diabetes exhibited considerable collagen accumulation, which was ameliorated by cafestol. Moreover, activities of catalase, superoxide dismutase, general matrix metalloproteinase, and reduced glutathione concentration were upregulated, whereas malondialdehyde level was downregulated by treatment with cafestol in rats with cardiac fibrosis. These findings highlight the effects of cafestol, which may be useful in treating diabetes-related cardiac fibrosis.

14.
Cancer Res ; 79(19): 4978-4993, 2019 10 01.
Article En | MEDLINE | ID: mdl-31431460

Overexpression of the serine/threonine kinase GLK/MAP4K3 in human lung cancer is associated with poor prognosis and recurrence, however, the role of GLK in cancer recurrence remains unclear. Here, we report that transgenic GLK promotes tumor metastasis and cell migration through the scaffold protein IQ motif-containing GTPase-activating protein 1(IQGAP1). GLK transgenic mice displayed enhanced distant metastasis. IQGAP1 was identified as a GLK-interacting protein; two proline-rich regions of GLK and the WW domain of IQGAP1 mediated this interaction. GLK and IQGAP1 colocalized at the leading edge including filopodia and lamellipodia of migrating cells. GLK directly phosphorylated IQGAP1 at Ser-480 enhancing Cdc42 activation and subsequent cell migration. GLK-induced cell migration and lung cancer metastasis were abolished by IQGAP1 depletion. Consistently, human NSCLC patient tissues displayed increased phospho-IQGAP1, which correlated with poor survival. Collectively, GLK promotes lung cancer metastasis by binding to, phosphorylating, and activating IQGAP1. SIGNIFICANCE: These findings show the critical role of the GLK-IQGAP cascade in cell migration and tumor metastasis, suggesting it as a potential biomarker and therapeutic target for lung cancer recurrence.


Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Neoplasm Invasiveness/pathology , Protein Serine-Threonine Kinases/metabolism , ras GTPase-Activating Proteins/metabolism , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phosphorylation
15.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158506, 2019 12.
Article En | MEDLINE | ID: mdl-31404652

The intracellular transport of lipophilic cargoes is a highly dynamic process. In eukaryotic cells, the uptake and release of long-chain fatty acids (LCFAs) are executed by fatty-acid binding proteins. However, how these carriers control the directionality of cargo trafficking remains unclear. Here, we revealed that the unliganded archetypal Drosophila brain-type fatty acid-binding protein (dFABP) possesses a stronger binding affinity than its liganded counterpart for empty nanodiscs (ND). Titrating unliganded dFABP and nanodiscs with LCFAs rescued the broadening of FABP cross-peak intensities in HSQC spectra from a weakened protein-membrane interaction. Two out of the 3 strongest LCFA contacting residues in dFABP identified by NMR HSQC chemical shift perturbation (CSP) are also part of the 30 ND-contacting residues (out of the total 130 residues in dFABP), revealed by attenuated TROSY signal in the presence of lipid ND to apo-like dFABP. Our crystallographic temperature factor data suggest enhanced αII helix dynamics upon LCFA binding, compensating for the entropic loss in the ßC-D/ßE-F loops. The aliphatic tail of bound LCFA impedes the charge-charge interaction between dFABP and the head groups of the membrane, and dFABP is prone to dissociate from the membrane upon ligand binding. We therefore conclude that lipophilic ligands participate directly in the control of the functionally required membrane association and dissociation of FABPs.


Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Animals , Cell Membrane/metabolism , Drosophila Proteins/chemistry , Drosophila melanogaster/chemistry , Fatty Acid-Binding Proteins/chemistry , Fatty Acids/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Protein Conformation , Substrate Specificity
16.
BMC Med Genomics ; 12(Suppl 5): 99, 2019 07 11.
Article En | MEDLINE | ID: mdl-31296206

BACKGROUND: CoMut plot is widely used in cancer research publications as a visual summary of mutational landscapes in cancer cohorts. This summary plot can inspect gene mutation rate and sample mutation burden with their relevant clinical details, which is a common first step for analyzing the recurrence and co-occurrence of gene mutations across samples. The cBioPortal and iCoMut are two web-based tools that allow users to create intricate visualizations from pre-loaded TCGA and ICGC data. For custom data analysis, only limited command-line packages are available now, making the production of CoMut plots difficult to achieve, especially for researchers without advanced bioinformatics skills. To address the needs for custom data and TCGA/ICGC data comparison, we have created CoMutPlotter, a web-based tool for the production of publication-quality graphs in an easy-of-use and automatic manner. RESULTS: We introduce a web-based tool named CoMutPlotter to lower the barriers between complex cancer genomic data and researchers, providing intuitive access to mutational profiles from TCGA/ICGC projects as well as custom cohort studies. A wide variety of file formats are supported by CoMutPlotter to translate cancer mutation profiles into biological insights and clinical applications, which include Mutation Annotation Format (MAF), Tab-separated values (TSV) and Variant Call Format (VCF) files. CONCLUSIONS: In summary, CoMutPlotter is the first tool of its kind that supports VCF file, the most widely used file format, as its input material. CoMutPlotter also provides the most-wanted function for comparing mutation patterns between custom cohort and TCGA/ICGC project. Contributions of COSMIC mutational signatures in individual samples are also included in the summary plot, which is a unique feature of our tool. CoMutPlotter is freely available at http://tardis.cgu.edu.tw/comutplotter .


Computational Biology/methods , Internet , Mutation , Neoplasms/genetics , Cohort Studies , Computer Graphics , Humans
17.
Structure ; 27(8): 1224-1233.e4, 2019 08 06.
Article En | MEDLINE | ID: mdl-31104814

YbeA from E. coli is a trefoil-knotted SpoU-TrmD (SPOUT) RNA methyltransferase. While its knotted motif plays a key functional role, it is unclear how the knotted topology emerged from evolution. Here, we reverse-engineered an unknotted circular permutant (CP) of YbeA by introducing a new opening at the knotting loop. The resulting CP folded into an unexpected domain-swapped dimer. Untying the knotted loop abrogated its function, perturbed its folding stability and kinetics, and induced allosteric dynamic changes. We speculated that the knotted loop of YbeA is under tension to keep the cofactor in a high-energy configuration while keeping the threading C-terminal helix being knotted. Circular permutation released the mechanical strain thereby allowing the spring-loaded threading helix to flip, to relax, and to form a domain-swapped dimer. Being knotted may be the consequence of selection pressure for the unique structure-function relationship of the SPOUT superfamily that exists in all kingdoms of life.


Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli/enzymology , Methyltransferases/chemistry , Methyltransferases/genetics , Allosteric Regulation , Escherichia coli/genetics , Genetic Variation , Models, Molecular , Protein Conformation , Protein Folding
18.
Biophys Rev ; 11(3): 263, 2019 Jun.
Article En | MEDLINE | ID: mdl-31119606
19.
PLoS One ; 14(3): e0213463, 2019.
Article En | MEDLINE | ID: mdl-30893332

Distant metastasis leads oral cancer patients into a poor survival rate and a high recurrence stage. During tumor progression, dysregulated microRNAs (miRNAs) have been reported to involve tumor initiation and modulate oral cancer malignancy. MiR-450a was significantly upregulated in oral squamous cell carcinoma (OSCC) patients without functional reports. This study was attempted to uncover the molecular mechanism of novel miR-450a in OSCC. Mir-450a expression was examined by quantitative RT-PCR, both in OSCC cell lines and patients. Specific target of miR-450a was determined by software prediction, luciferase reporter assay, and correlation with target protein expression. The functions of miR-450a and TMEM182 were accessed by adhesion and transwell invasion analyses. Determination of the expression and cellular localization of TMEM182 was examined by RT-PCR and by immunofluorescence staining. The signaling pathways involved in regulation of miR-450a were investigated using the kinase inhibitors. Overexpression of miR-450a in OSCC cells impaired cell adhesion ability and induced invasiveness, which demonstrated the functional role of miR-450a as an onco-miRNA. Interestingly, tumor necrosis factor alpha (TNF-α)-mediated expression of TMEM182 was regulated by miR-450a induction. MiR-450a-reduced cellular adhesion was abolished by TMEM182 restoration. Furthermore, the oncogenic activity of TNF-α/miR-450a/TMEM182 axis was primarily through activating extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. ERK1/2 inhibitor prevented the TNF-α-induced miR-450a expression and enhanced adhesion ability. Our data suggested that TNF-α-induced ERK1/2-dependent miR-450a against TMEM182 expression exerted a great influence on increasing OSCC motility. Overall, our results provide novel molecular insights into how TNF-α contributes to oral carcinogenesis through miR-450a that targets TMEM182.


Carcinoma, Squamous Cell/metabolism , Membrane Proteins/metabolism , MicroRNAs/metabolism , Mouth Neoplasms/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adult , Aged , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/secondary , Cell Adhesion/genetics , Cell Adhesion/physiology , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/physiology , Female , Humans , MAP Kinase Signaling System , Male , Membrane Proteins/genetics , MicroRNAs/genetics , Middle Aged , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology
20.
J Mol Biol ; 431(4): 857-863, 2019 02 15.
Article En | MEDLINE | ID: mdl-30639189

Topologically knotted proteins are tantalizing examples of how polypeptide chains can explore complex free energy landscapes to efficiently attain defined knotted conformations. The evolution trails of protein knots, however, remain elusive. We used circular permutation to change an evolutionally conserved topologically knotted SPOUT RNA methyltransferase into an unknotted form. The unknotted variant adopted the same three-dimensional structure and oligomeric state as its knotted parent, but its folding stability was markedly reduced with accelerated folding kinetics and its ligand binding was abrogated. Our findings support the hypothesis that the universally conserved knotted topology of the SPOUT superfamily evolved from unknotted forms through circular permutation under selection pressure for folding robustness and, more importantly, for functional requirements associated with the knotted structural element.


Proteins/metabolism , Kinetics , Ligands , Methyltransferases/metabolism , Peptides/metabolism , Protein Binding/physiology , Protein Conformation , Protein Folding , RNA/metabolism
...