Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Article En | MEDLINE | ID: mdl-38880055

Grape and grape derived products contain many bioactive phenolics which have a variety of impacts on health. Following oral ingestion, the phenolic compounds and their metabolites may be detectable in human urine. However, developing a reliable method for the analysis of phenolic compounds in urine is challenging. In this work, we developed and validated a new high-throughput, sensitive and reproducible analytical method for the simultaneous analysis of 31 grape phenolic compounds and metabolites using Oasis PRiME HLB cleanup for sample preparation combined with ultra-performance liquid chromatography with triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). Using this new method, the accuracy achieved was 69.3 % ∼ 134.9 % (except for six compounds), and the recovery achieved was 52.4 % ∼ 134.7 % (except for two very polar compounds). For each of the 31 target analytes, the value of intra-day precision was less than 14.3 %. The value of inter-day precision was slightly higher than intra-day precision, with a range of 0.7 % ∼ 19.1 %. We report for the first time on the effect of gender and BMI on the accuracy and recovery of human urine samples, and results from analysis of variance (ANOVA), and principal component analysis (PCA) indicated there was no difference in the value of accuracy and recovery between different gender or BMI (>30) using our purposed cleanup and UHPLC-QqQ-MS/MS method. Overall, this newly developed method could serve as a powerful tool for analyzing grape phenolic compounds and metabolites in human urine samples.

2.
Front Plant Sci ; 14: 1121582, 2023.
Article En | MEDLINE | ID: mdl-36866384

Introduction: Catnip (Nepeta cataria L.) produces volatile iridoid terpenes, mainly nepetalactones, with strong repellent activity against species of arthropods with commercial and medical importance. Recently, new catnip cultivars CR3 and CR9 have been developed, both characterized by producing copious amounts of nepetalactones. Due to its perennial nature, multiple harvests can be obtained from this specialty crop and the effects of such practice on the phytochemical profile of the plants are not extensively studied. Methods: In this study we assessed the productivity of biomass, chemical composition of the essential oil and polyphenol accumulation of new catnip cultivars CR3 and CR9 and their hybrid, CR9×CR3, across four successive harvests. The essential oil was obtained by hydrodistillation and the chemical composition was obtained via gas chromatography-mass spectrometry (GC-MS). Individual polyphenols were quantified by Ultra-High-Performance Liquid Chromatography- diode-array detection (UHPLC-DAD). Results: Although the effects on biomass accumulation were independent of genotypes, the aromatic profile and the accumulation of polyphenols had a genotype-dependent response to successive harvests. While cultivar CR3 had its essential oil dominated by E,Z-nepetalactone in all four harvests, cultivar CR9 showed Z,E-nepetalactone as the main component of its aromatic profile during the 1st, 3rd and 4th harvests. At the second harvest, the essential oil of CR9 was mainly composed of caryophyllene oxide and (E)-ß-caryophyllene. The same sesquiterpenes represented the majority of the essential oil of the hybrid CR9×CR3 at the 1st and 2nd successive harvests, while Z,E-nepetalactone was the main component at the 3rd and 4th harvests. For CR9 and CR9×CR3, rosmarinic acid and luteolin diglucuronide were at the highest contents at the 1st and 2nd harvest, while for CR3 the peak occurred at the 3rd successive harvest. Discussion: The results emphasize that agronomic practices can significantly affect the accumulation of specialized metabolites in N. cataria and the genotype-specific interactions may indicate differential ecological adaptations of each cultivar. This is the first report on the effects of successive harvest on these novel catnip genotypes and highlights their potential for the supply of natural products for the pest control and other industries.

3.
Molecules ; 27(20)2022 Oct 19.
Article En | MEDLINE | ID: mdl-36296649

Catnip (Nepeta cataria L.) is of scientific interest largely due to the production of nepetalactones, volatile iridoid terpenes with strong arthropod repellent activity. However, the plant can also produce other bioactive volatile iridoids, such as nepetalic acid (NA), nepetalactam (NT) and dihydronepetalactone (DHNL) that have not been studied extensively. Germplasm studies on plants that can produce such compounds are scarce. The present study evaluated the chemical diversity of catnip genotypes with a focus on NA, NT and DHNL. A total of 34 genotypes were harvested at different times over two years. The ethanolic extract of the plants was screened for iridoids by ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry. CR9 × CR3 genotype had the highest value for biomass yield, while cultivar CR9 had the highest value for accumulated NA. Genotype UK.2 had the highest value for accumulated NT yield and CR5 had the highest value for accumulated DHNL. Overall, patented cultivars and elite selections performed better than other less studied genotypes. Harvest time influenced the accumulation of secondary metabolites differentially for the genotypes. This is the first germplasm study with a focus on these iridoid compounds, yet more studies are necessary as genotype characterization is essential for breeding and standardization of products for industry.


Nepeta , Oils, Volatile , Nepeta/genetics , Nepeta/chemistry , Terpenes , Iridoids , Plant Breeding , Plant Extracts/chemistry , Genotype , Oils, Volatile/chemistry
4.
Metabolites ; 12(9)2022 Sep 05.
Article En | MEDLINE | ID: mdl-36144243

Rheumatoid arthritis (RA) is characterized by systemic inflammation and synovial hyperplasia. Pristimerin, a natural triterpenoid isolated from plants belonging to the Celastraceae and Hippocrateaceae families, has been reported to exhibit anti-inflammation and anti-proliferation activities. Our study aims to reveal the antiarthritic effects of pristimerin and explore its potential mechanism using in vitro, in silico, and in vivo methods. In the present study, pristimerin treatment led to a dose-dependent decrease in cell viability and migration in TNF-α stimulated human rheumatoid arthritis fibroblast-like synoviocytes MH7A. Moreover, UPLC-LTQ-Orbitrap-based cell metabolomics analysis demonstrated that phospholipid biosynthesis, fatty acid biosynthesis, glutathione metabolism and amino acid metabolic pathways were involved in TNF-α induced MH7A cells after pristimerin treatment. In addition, the adjuvant-induced arthritis (AIA) rat model was employed, and the results exhibited that pristimerin could effectively relieve arthritis symptoms and histopathological damage as well as reduce serum levels of TNF-α, NO and synovial expressions of p-Akt and p-Erk in AIA rats. Furthermore, network pharmacology analysis was performed to visualize crucial protein targets of pristimerin for RA treatment, which showed that the effects were mediated through the MAPK/Erk1/2, PI3K/Akt pathways and directing binding with TNF-α. Taken together, our study not only offered new insights into the biochemical mechanism of natural compounds for RA treatment, but also provided a strategy that integrated in vitro, in silico and in vivo studies to facilitate screening of new anti-RA drugs.

5.
Biomedicines ; 10(6)2022 May 28.
Article En | MEDLINE | ID: mdl-35740286

Overexposure to mental stress throughout life is a significant risk factor for the development of neuropsychiatric disorders, including depression and anxiety. The immune system can initiate a physiological response, releasing stress hormones and pro-inflammatory cytokines, in response to stressors. These effects can overcome allostatic physiological mechanisms and generate a pro-inflammatory environment with deleterious effects if occurring chronically. Previous studies in our lab have identified key anti-inflammatory properties of a bioavailable polyphenolic preparation BDPP and its ability to mitigate stress responses via the attenuation of NLRP3 inflammasome-dependent responses. Inflammasome activation is part of the first line of defense against stimuli of different natures, provides a rapid response, and, therefore, is of capital importance within the innate immunity response. malvidin-3-O-glucoside (MG), a natural anthocyanin present in high proportions in grapes, has been reported to exhibit anti-inflammatory effects, but its mechanisms remain poorly understood. This study aims to elucidate the therapeutic potential of MG on inflammasome-induced inflammation in vitro and in a mouse model of chronic unpredictable stress (CUS). Here, it is shown that MG is an anti-pyroptotic phenolic metabolite that targets NLRP3, NLRC4, and AIM2 inflammasomes, subsequently reducing caspase-1 and IL-1ß protein levels in murine primary cortical microglia and the brain, as its beneficial effect to counteract anxiety and depression is also demonstrated. The present study supports the role of MG to mitigate bacterial-mediated inflammation (lipopolysaccharide or LPS) in vitro and CUS-induced behavior impairment in vivo to address stress-induced inflammasome-mediated innate response.

6.
Food Chem ; 373(Pt A): 131096, 2022 Mar 30.
Article En | MEDLINE | ID: mdl-34710678

Reliable analysis of phenolic compounds in fatty matrices is a challenging task. In this work, a robust analytical method was developed and validated for 55 phenolic compounds employing QuEChERS (quick, efficient, cheap, easy, rugged and safe) and Enhanced Matrix Removal (EMR)-lipid cleanup in 96-well plates for sample preparation, coupled with ultra-high performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). Seven high-fat matrices of pork brain, belly and liver; horse serum, beef, salmon and avocado were explored for method validation and led to promising stepwise recoveries of extraction, clean-up, drying-reconstitution of most analytes ranging from 75% to 113%, and with an accuracy of 78%∼117%, except for six catechin-analogues. The matrix removal efficiency of EMR was determined using UHPLC-quadruple time of flight (QTOF)-MS, and results indicated that 56%∼77% of co-extractives were removed. This method would be readily extended to wide range of applications demanding high-throughput and sensitive analysis of phenolic compounds in fatty samples.


Persea , Tandem Mass Spectrometry , Animals , Cattle , Chromatography, High Pressure Liquid , Lipids , Phenols , Solid Phase Extraction
7.
Food Chem ; 373(Pt A): 131424, 2022 Mar 30.
Article En | MEDLINE | ID: mdl-34710685

The aim of this work was to develop an approach combining LC-MS-based metabolomics and machine learning to distinguish between and predict authentic and adulterated lemon juices. A targeted screening of six major flavonoids was first conducted using ultraviolet ion trap MS. To improve the prediction accuracy, an untargeted methodology was carried out using UHPLC-QTOF/MS. Based on the acquired metabolic profiles, both PCA and PLS-DA were conducted. Results exhibited a cluster pattern and a separation potential between authentic and adulterated samples. Five machine learning models were then developed to further analyze the data. The model of support vector machine achieved the highest prediction power, with accuracy up to 96.7 ± 7.5% for the cross-validation set and 100% for the testing set. In addition, 79 characteristic m/z were tentatively identified. This work demonstrated that untargeted screening coupled with machine learning models can be a powerful tool to facilitate detection of lemon juice adulteration.


Fruit and Vegetable Juices , Metabolomics , Chromatography, High Pressure Liquid , Chromatography, Liquid , Machine Learning , Mass Spectrometry
8.
Front Nutr ; 8: 780260, 2021.
Article En | MEDLINE | ID: mdl-34901128

Methods for a dissolution study by ultra-high performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC-QqQ/MS) analysis of grape polyphenol dietary supplements, namely, grape seed extract (GSE) and resveratrol (RSV) capsules, were developed following the guidance of United States Pharmacopeia (USP) <2040>. Two dissolution media, 0.1 N hydrochloric acid (pH 1.2) and 0.05 M acetate buffer (pH 4.6), were evaluated with dissolution apparatus (USP 1), 100 rpm rotation speed, and 900 ml dissolution medium volume. Dissolution profiling was performed over 120 min. Major phenolic compounds of gallic acid, catechin, epicatechin, and procyanidin B2 were quantitated to obtain the dissolution profile of GSE capsules, and trans-RSV was used for RSV capsules. Results indicated that the released trans-RSV for RSV capsules in both of the dissolution media meets the USP standards, and that for the GSE capsules, all the four marker compounds passed the dissolution test in the HCl medium but did not reach a 75% release within 60 min in the acetate buffer. These promising results suggest that the general USP dissolution protocols are adequate for the successful release of RSV capsules in HCl medium and acetate buffer and GSE capsules (in HCl medium), but may be inadequate for GSE capsules in acetate buffer. These results showed that under a low pH of 1.2 (simulated stomach environment), bioactive compounds were released on time from the GSE capsules and met the USP guidelines; however, under a higher pH of 4.6 (simulated duodenum environment), the same biomarkers failed, suggesting the need to further improve the dissolution of GSE over a wider range of pH environments to enhance bioavailability and efficacy.

9.
Talanta ; 235: 122716, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34517584

Raspberry ketone (RK) is a major flavor compound in red raspberries, and it has been marketed as a popular weight-loss dietary supplement with high potential in accumulating in fatty tissues. However, challenges in extracting and characterizing RK and its associated phenolic compounds in fatty tissues persist due to the complex matrix effect. In this work, we reported a high-throughput sample preparation method for RK and 25 related phenolic compounds in white adipose tissues using an improved micro-scale QuEChERS (quick, efficient, cheap, easy, rugged and safe) approach with enhanced matrix removal (EMR)-lipid cleanup in 96-well plates, followed by UHPLC-QqQ-MS/MS analysis. The absolute recovery was 73-105% at the extraction step, and achieved 71-96% at the EMR cleanup step. The EMR cleanup removed around 66% of total lipids in the acetonitrile extract as profiled by UHPLC-QTOF-MS/MS. The innovative introduction of a reversed-phase C18 sorbent into the extract significantly improved the analytes' recovery during SpeedVac drying. The final accuracy achieved 80-120% for most analytes. Overall, this newly developed and validated method could serve as a powerful tool for analyzing RK and related phenolic compounds in fatty tissues.


Butanones , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Phenols , Solid Phase Extraction
10.
J Chromatogr A ; 1637: 461733, 2021 Jan 25.
Article En | MEDLINE | ID: mdl-33385745

A hydrophilic interaction (HILIC) ultra-high performance liquid chromatography (UHPLC) with triple quadrupole tandem mass spectrometry (MS/MS) method was developed and validated for the quantification of 21 free amino acids (AAs). Compared to published reports, our method renders collectively improved sensitivity with lower limit of quantification (LLOQ) at 0.5~42.19 ng/mL with 0.3 µL injection volume (or equivalently 0.15~12.6 pg injected on column), robust linear range from LLOQ up to 3521~5720 ng/mL (or 1056 ~ 1716 pg on column) and a high throughput with total time of 6 min per sample, as well as easier experimental setup, less maintenance and higher adaptation flexibility. Ammonium formate in the mobile phase, though commonly used in HILIC, was found unnecessary in our experimental setup, and its removal from mobile phase was key for significant improvement in sensitivity (4~74 times higher than with 5 mM ammonium formate). Addition of 10 (or up to100 mM) hydrochloric acid (HCl) in the sample diluent was crucial to keep response linearity for basic amino acids of histidine, lysine and arginine. Different HCl concentration (10~100 mM) in sample diluent also excreted an effect on detection sensitivity, and it is of importance to keep the final prepared sample and calibrators in the same HCl level. Leucine and isoleucine were distinguished using different transitions. Validated at seven concentration levels, accuracy was bound within 75~125%, matrix effect generally within 90~110%, and precision error mostly below 2.5%. Using this newly developed method, the free amino acids were then quantified in a total of 544 African indigenous vegetables (AIVs) samples from African nightshades (AN), Ethiopian mustards (EM), amaranths (AM) and spider plants (SP), comprising a total of 8 identified species and 43 accessions, cultivated and harvested in USA, Kenya and Tanzania over several years, 2013~2018. The AN, EM, AM and SP were distinguished based on free AAs profile using machine learning methods (ML) including principle component analysis, discriminant analysis, naïve Bayes, elastic net-regularized logistic regression, random forest and support vector machine, with prediction accuracy achieved at ca. 83~97% on the test set (train/test ratio at 7/3). An interactive ML platform was constructed using R Shiny at https://boyuan.shinyapps.io/AIV_Classifier/ for modeling train-test simulation and category prediction of unknown AIV sample(s). This new method presents a robust and rapid approach to quantifying free amino acids in plants for use in evaluating plants, biofortification, botanical authentication, safety, adulteration and with applications to nutrition, health and food product development.


Amino Acids/analysis , Chromatography, High Pressure Liquid/methods , Machine Learning , Tandem Mass Spectrometry/methods , Vegetables/chemistry , Bayes Theorem , Humans , Hydrophobic and Hydrophilic Interactions , Principal Component Analysis , Reproducibility of Results
11.
J Food Drug Anal ; 29(2): 275-286, 2021 06 15.
Article En | MEDLINE | ID: mdl-35696215

A total of 81 lemon juices samples were detected using an optimized UHPLC-QqQ-MS/MS method and colorimetric assays. Concentration of 3 organic acids (ascorbic acid, malic acid and citric acid), 3 saccharides (glucose, fructose and sucrose) and 6 phenolic acids (trans-p-coumaric acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, caffeic acid) were quantified. Their total polyphenol, antioxidant activity and Ferric reducing antioxidant power were also measured. For the prediction of authentic and adulterated lemon juices and commercially sourced lemonade beverages based on the acquired metabolic profile, machine learning models including linear discriminant analysis, Gaussian naïve Bayes, lasso-regularized logistic regression, random forest (RF) and support vector machine were developed based on training (70%)-cross-validation-testing (30%) workflow. The predicted accuracy on the testing set is 73-86% for different models. Individual conditional expectation analysis (how predicted probabilities change when the feature magnitude changes) was applied for model interpretation, which in particular revealed the close association of RF-probability prediction with nuance characteristics of the density distribution of metabolic features. Using established models, an open-source online dashboard was constructed for convenient classification prediction and interactive visualization in real practice.


Beverages , Tandem Mass Spectrometry , Bayes Theorem , Beverages/analysis , Chromatography, High Pressure Liquid/methods , Machine Learning , Tandem Mass Spectrometry/methods
12.
Plant Cell Physiol ; 61(12): 2018-2030, 2021 Feb 04.
Article En | MEDLINE | ID: mdl-32931553

Choline, as a precursor of glycine betaine (GB) and phospholipids, is known to play roles in plant tolerance to salt stress, but the downstream metabolic pathways regulated by choline conferring salt tolerance are still unclear for non-GB-accumulating species. The objectives were to examine how choline affects salt tolerance in a non-GB-accumulating grass species and to determine major metabolic pathways of choline regulating salt tolerance involving GB or lipid metabolism. Kentucky bluegrass (Poa pratensis) plants were subjected to salt stress (100 mM NaCl) with or without foliar application of choline chloride (1 mM) in a growth chamber. Choline or GB alone and the combined application increased leaf photochemical efficiency, relative water content and osmotic adjustment and reduced leaf electrolyte leakage. Choline application had no effects on the endogenous GB content and GB synthesis genes did not show responses to choline under nonstress and salt stress conditions. GB was not detected in Kentucky bluegrass leaves. Lipidomic analysis revealed an increase in the content of monogalactosyl diacylglycerol, phosphatidylcholine and phosphatidylethanolamine and a decrease in the phosphatidic acid content by choline application in plants exposed to salt stress. Choline-mediated lipid reprogramming could function as a dominant salt tolerance mechanism in non-GB-accumulating grass species.


Choline/metabolism , Lipid Metabolism , Poa/metabolism , Salt-Tolerant Plants/metabolism , Betaine/metabolism , Choline/pharmacology , Choline/physiology , Gene Expression Regulation, Plant/physiology , Genes, Plant/physiology , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Plant Leaves/metabolism , Poa/drug effects , Poa/physiology , Salt Stress , Salt Tolerance , Salt-Tolerant Plants/physiology
13.
Front Nutr ; 8: 780226, 2021.
Article En | MEDLINE | ID: mdl-34977124

Bioactive dietary polyphenols in grape (Vitis vinifera) have been used in Dietary Supplements (DSs) with the aim to prevent numerous diseases, including cardiovascular and neurodegenerative diseases, and to reduce depression and anxiety. Given prior recognition that DSs can be quality challenged from the purity, authentication, adulteration, and actual concentration of targeted bioactives, to ensure consumer health protection as well as the quality and safety of grape polyphenol-based DSs, the present investigation was aimed at establishing a comprehensive quality control (QC) approach for grape polyphenol-based DSs in support of a human clinical study. In this study, the manufactured grape seed polyphenol extract (GSPE) and trans-resveratrol (RSV) capsules and Concord Grape Juice (CGJ) along with the corresponding original drug materials were analyzed using the developed different liquid chromatography/UV-visible spectroscopy/mass spectrometry (LC/UV-Vis/MS) methods. The weight variation of GSPE and RSV capsules was also evaluated according to the US Pharmacopeia (USP) tests. The results indicate that the total identified polyphenol content in each grape seed extract (GSE) capsule/CGJ is very similar and all GSE/RSV capsules pass the content/weight uniformity test. Given the complexity of these and many botanical products from the issues of purity, quality, adulteration, consistency, and their coupling to the complex chemistry in each grape-derived botanical, quality assurance and the steps needed to ensure grape-derived DSs being well homogeneous and stable and containing the known and expected bioactives at specific concentration ranges are fundamental to any research study and in particular to a clinical trial. Each of these issues is essential to provide a solid foundation upon which clinical trials with botanicals can be conducted with the goal of realizing measurable mental health outcomes such as reducing depression and anxiety as well as understanding of their underlying biological mechanisms.

14.
Rapid Commun Mass Spectrom ; 34(19): e8882, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32644256

RATIONALE: The safe consumption of Solanum scabrum and S. nigrum berries (SNBs) depends on a reliable and rapid chemical screen for the testing of the fruit and/or final food and industrial products for the presence and level of toxic glycoalkaloids. Such a rapid and sensitive screen could also be used by those involved in food safety and forensics, industry, research labs and those in agriculture production, breeding and food processing. Significant variation in the content and composition of glycoalkaloids across SNBs has been reported. To facilitate high-throughput targeted analysis, this work overcame the slow scan speed of a traditional triple quadruple mass spectrometry (QqQ) method by development of a pseudo-MS3 method. METHODS: In-source fragmentation functioned as a pseudo-MS or pseudo-hydrolysis to trim down the structurally diverse and complex glycosides into five types of aglycone ions, which were then analyzed using multiple reaction monitoring (MRM). Characteristic product ions were selected based on the aglycone skeleton and substitution pattern and associated fragmentation pathway. RESULTS: A compact method with only 15 MRM transitions were developed for high-throughput screening of very diverse glycoalkaloids. Glycosides of the same aglycone type were readily identified in the same transition window without the need for mass spectra interpretation. Validated using solamargine, the sole available standard, the accuracy was 99.7-101.3%, the intra- and inter-day precision were, respectively, 2.5-5.0% and 8.0-9.2%, and the lower limit of detection and quantification were, respectively, 3.1 and 10.2 ng/mL (with 1 µL injection volume). CONCLUSIONS: The peudo-MS3 method allowed for high-throughput targeted analysis with compact MRM transitions to address a large number of glycoalkaloids with diverse structures. This method could serve to meet the most heavy-duty demand for rapid inspection of glycoalkaloids in SNBs. This method can be adopted and used by those involved in food safety and forensics, in developing food and industrial products and in genetics and breeding.


Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Solanaceous Alkaloids/analysis , Solanum/chemistry , Tandem Mass Spectrometry/methods , Linear Models , Reproducibility of Results , Sensitivity and Specificity
15.
Bioorg Med Chem Lett ; 27(12): 2668-2673, 2017 06 15.
Article En | MEDLINE | ID: mdl-28460819

The estrogen receptor (ER) has played an important role in breast cancer development and progression and is a central target for anticancer drug discovery. In order to develop novel selective ERα modulators (SERMs), we designed and synthesized 18 novel 3-aryl-4-anilino-2H-chromen-2-one derivatives based on previously reported lead compounds. The biological results indicated that most of the compounds presented potent ERα binding affinity and possessed better anti-proliferative activities against MCF-7 and Ishikawa cell lines than the positive control tamoxifen. The piperidyl substituted compounds such as 16d and 18d demonstrated strong ERα binding affinities and excellent anti-proliferative activities respectively. Compound 18d displayed the most potent ERα binding affinity with RBA value of 2.83%, while 16d exhibited the best anti-proliferative activity against MCF-7 cells with IC50 value of 4.52±2.47µM. Further molecular docking studies were also carried out to investigate binding pattern of the newly synthesized compounds with ERα. All these results together with the structure-activity relationships (SARs) indicated that these 3-aryl-4-anilino-2H-chromen-2-one derivatives with basic side chain could serve as promising leads for further optimization as novel SERMs.


Antineoplastic Agents/pharmacology , Chromones/pharmacology , Drug Design , Estrogen Receptor alpha/antagonists & inhibitors , Molecular Docking Simulation , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chromones/chemical synthesis , Chromones/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Estrogen Receptor alpha/metabolism , Humans , MCF-7 Cells , Molecular Structure , Structure-Activity Relationship
16.
Steroids ; 124: 29-34, 2017 08.
Article En | MEDLINE | ID: mdl-28549802

5α-Reductase is a key enzyme responsible for dihydrotestosterone biosynthesis and has been recognized as an important target for discovering new drugs against benign prostatic hyperplasia (BPH). In this study, a series of novel steroidal androst-3,5-diene-3-carboxylic acids have been designed and synthesized. Biological evaluations were performed on their 5α-reductase inhibitory activities by both in vitro enzyme inhibition assay and in vivo by prostate weighing method. Results showed that most of them displayed excellent 5α-reductase inhibitory potency. Detailed evaluation indicated that most of the compounds displayed slightly higher inhibition potency towards type 2 isozyme. Among all the compounds, 16a was found to be the most potential inhibitor with the IC50 of 0.25µM and 0.13µM against type 1 and 2 isozymes respectively. In vivo 5a-reductase inhibitory evaluation of 16a also showed a more significant reduction effect (p<0.001) in rat prostate weight than epristeride. Furthermore, the results of in silico ADME study indicated that compound 16a exhibited good pharmacokinetic properties. Thus, 16a could serve as promising lead candidates for further study.


5-alpha Reductase Inhibitors/chemical synthesis , 5-alpha Reductase Inhibitors/pharmacology , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacology , Cholestenone 5 alpha-Reductase/metabolism , Drug Design , 5-alpha Reductase Inhibitors/chemistry , 5-alpha Reductase Inhibitors/pharmacokinetics , Animals , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacokinetics , Chemistry Techniques, Synthetic , Computer Simulation , Male , Rats
17.
Bioorg Med Chem Lett ; 27(4): 867-874, 2017 02 15.
Article En | MEDLINE | ID: mdl-28110871

Various 3-substituted 4-anilino-coumarin derivatives have been designed, synthesized and their anti-proliferative properties have been studied. The in vitro cytotoxicity screening was performed against MCF-7, HepG2, HCT116 and Panc-1 cancer cell lines by MTT assay. Most of the synthesized compounds exhibited comparable anti-proliferative activity to the positive control 5-Fluorouracil against these four tested cancer cell lines. Among the different substituents at C-3 position of coumarin scaffold, 3-trifluoroacetyl group showed the most promising results. Especially, compounds 33d (IC50=16.57, 5.45, 4.42 and 5.16µM) and 33e (IC50=20.14, 6.71, 4.62 and 5.62µM) showed excellent anti-proliferative activities on MCF-7, HepG2, HCT116 and Panc-1 cell lines respectively. In addition, cell cycle analysis and apoptosis activation revealed that 33d induced G2/M phase arrest and apoptosis in MCF-7 cells in a dose-dependent manner. Low toxicity of compounds 33d and 33e was observed against human umbilical vein endothelial cells (HUVECs), suggesting their acceptable safety profiles in normal cells. Furthermore, the results of in silico ADME studies indicated that both 33d and 33e exhibited good pharmacokinetic properties.


Antineoplastic Agents/chemical synthesis , Coumarins/chemistry , Drug Design , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coumarins/pharmacology , DNA Damage/drug effects , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , HCT116 Cells , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , M Phase Cell Cycle Checkpoints/drug effects , MCF-7 Cells , Structure-Activity Relationship
...