Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Meas ; 31(7): 1037-46, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20585150

RESUMEN

The ambulatory arterial stiffness index (AASI) is claimed to be a new estimator for arterial rigidity. It was recently defined as one minus the slope of the linear regression of systolic to diastolic ambulatory pressure during 24 h. Although several reports testify its clinical relevance, the explanation of how this new index is conceptually associated with arterial stiffness remains controversial. In this work we hypothesize that nonlinear arterial elasticity is behind AASI physiological principles. To that end, random number generators were used to emulate arterial cross-sectional area (CSA) during 24 h. Pressure values were calculated using linear and nonlinear elasticity models for rigid and compliant arteries. The AASI was calculated from simulated pressures and also analytically predicted for each model. Additionally, invasive aortic pressure and CSA were continuously measured in a conscious sheep during 24 h to test the nonlinear model. We found that analytical solutions agreed with simulation outcomes; for the nonlinear model, the AASI was higher in rigid arteries with respect to compliant arteries (0.51 versus 0.38) and the linear model systematically predicted AASI = 0. For in vivo pressure measurements, AASI was 0.31. Using the measured pulsatile CSA and an estimation of the elastic constant for the nonlinear model, the AASI was accurately predicted with errors below 5%. We conclude that the AASI is higher in stiffer arteries due to the nonlinear behavior of the arterial wall. With a nonlinear arterial function, the slope of the linear regression of diastolic to systolic pressures during 24 h depends on the product of an elastic constant by the pulsatile CSA. As the elastic constant dominates the product, the reported associations between the AASI and arterial stiffness indices now have a consistent explanation.


Asunto(s)
Arterias/fisiología , Monitoreo Ambulatorio de la Presión Arterial/métodos , Elasticidad/fisiología , Dinámicas no Lineales , Animales , Adaptabilidad/fisiología , Simulación por Computador , Hemodinámica/fisiología , Humanos , Pulso Arterial , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA