Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 213(4): 1465-1478, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31619445

RESUMEN

Caenorhabditis elegans larval development requires the function of the two Canal-Associated Neurons (CANs): killing the CANs by laser microsurgery or disrupting their development by mutating the gene ceh-10 results in early larval arrest. How these cells promote larval development, however, remains a mystery. In screens for mutations that bypass CAN function, we identified the gene kin-29, which encodes a member of the Salt-Inducible Kinase (SIK) family and a component of a conserved pathway that regulates various C. elegans phenotypes. Like kin-29 loss, gain-of-function mutations in genes that may act upstream of kin-29 or growth in cyclic-AMP analogs bypassed ceh-10 larval arrest, suggesting that a conserved adenylyl cyclase/PKA pathway inhibits KIN-29 to promote larval development, and that loss of CAN function results in dysregulation of KIN-29 and larval arrest. The adenylyl cyclase ACY-2 mediates CAN-dependent larval development: acy-2 mutant larvae arrested development with a similar phenotype to ceh-10 mutants, and the arrest phenotype was suppressed by mutations in kin-29 ACY-2 is expressed predominantly in the CANs, and we provide evidence that the acy-2 functions in the CANs to promote larval development. By contrast, cell-specific expression experiments suggest that kin-29 acts in both the hypodermis and neurons, but not in the CANs. Based on our findings, we propose two models for how ACY-2 activity in the CANs regulates KIN-29 in target cells.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , AMP Cíclico/metabolismo , Neuronas/metabolismo , Transducción de Señal , Adenilil Ciclasas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Larva/crecimiento & desarrollo , Modelos Biológicos , Mutación/genética , Fenotipo , Dominios Proteicos , Tejido Subcutáneo , Regulación hacia Arriba
2.
Genetics ; 207(4): 1533-1545, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28993416

RESUMEN

The Caenorhabditis elegans ventral nerve cord (VNC) consists of two asymmetric bundles of neurons and axons that are separated by the midline. How the axons are guided to stay on the correct sides of the midline remains poorly understood. Here we provide evidence that the conserved Wnt signaling pathway along with the Netrin and Robo pathways constitute a combinatorial code for midline guidance of PVP and PVQ axons that extend into the VNC. Combined loss of the Wnts CWN-1, CWN-2, and EGL-20 or loss of the Wnt receptor CAM-1 caused >70% of PVP and PVQ axons to inappropriately cross over from the left side to the right side. Loss of the Frizzled receptor LIN-17 or the planar cell polarity (PCP) protein VANG-1 also caused cross over defects that did not enhance those in the cam-1 mutant, indicating that the proteins function together in midline guidance. Strong cam-1 expression can be detected in the PVQs and the guidepost cell PVT that is located on the midline. However, only when cam-1 is expressed in PVT are the crossover defects of PVP and PVQ rescued, showing that CAM-1 functions nonautonomously in PVT to prevent axons from crossing the midline.


Asunto(s)
Orientación del Axón/genética , Proteínas de Caenorhabditis elegans/genética , Fosfoproteínas/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Acoplados a Proteínas G/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Movimiento Celular/genética , Polaridad Celular/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/metabolismo , Netrinas/genética , Proteínas Wnt/genética , Vía de Señalización Wnt/genética
3.
PLoS One ; 6(6): e21343, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21712952

RESUMEN

Adiponectin is an adipokine with insulin-sensitising actions in vertebrates. Its receptors, AdipoR1 and AdipoR2, are PAQR-type proteins with 7-transmembrane domains and topologies reversed that of GPCR's, i.e. their C-termini are extracellular. We identified three adiponectin receptor homologs in the nematode C. elegans, named paqr-1, paqr-2 and paqr-3. These are differently expressed in the intestine (the main fat-storing tissue), hypodermis, muscles, neurons and secretory tissues, from which they could exert systemic effects. Analysis of mutants revealed that paqr-1 and -2 are novel metabolic regulators in C. elegans and that they act redundantly but independently from paqr-3. paqr-2 is the most important of the three paqr genes: mutants grow poorly, fail to adapt to growth at low temperature, and have a very high fat content with an abnormal enrichment in long (C20) poly-unsaturated fatty acids when combined with the paqr-1 mutation. paqr-2 mutants are also synthetic lethal with mutations in nhr-49, sbp-1 and fat-6, which are C. elegans homologs of nuclear hormone receptors, SREBP and FAT-6 (a Δ9 desaturase), respectively. Like paqr-2, paqr-1 is also synthetic lethal with sbp-1. Mutations in aak-2, the C. elegans homolog of AMPK, or nhr-80, another nuclear hormone receptor gene, suppress the growth phenotype of paqr-2 mutants, probably because they restore the balance between energy expenditure and storage. We conclude that paqr-1 and paqr-2 are receptors that regulate fatty acid metabolism and cold adaptation in C. elegans, that their main function is to promote energy utilization rather than storage, and that PAQR class proteins have regulated metabolism in metazoans for at least 700 million years.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Metabolismo Energético/fisiología , Homeostasis , Isoformas de Proteínas/metabolismo , Receptores de Adiponectina/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/anatomía & histología , Proteínas de Caenorhabditis elegans/clasificación , Proteínas de Caenorhabditis elegans/genética , Dieta , Humanos , Metabolismo de los Lípidos/genética , Mutación , Fenotipo , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Receptores de Adiponectina/clasificación , Receptores de Adiponectina/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
4.
Genetics ; 186(3): 969-82, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20805556

RESUMEN

The organs of animal embryos are typically covered with an extracellular matrix (ECM) that must be carefully remodeled as these organs enlarge during post-embryonic growth; otherwise, their shape and functions may be compromised. We previously described the twisting of the Caenorhabditis elegans pharynx (here called the Twp phenotype) as a quantitative mutant phenotype that worsens as that organ enlarges during growth. Mutations previously known to cause pharyngeal twist affect membrane proteins with large extracellular domains (DIG-1 and SAX-7), as well as a C. elegans septin (UNC-61). Here we show that two novel alleles of the C. elegans papilin gene, mig-6(et4) and mig-6(sa580), can also cause the Twp phenotype. We also show that overexpression of the ADAMTS protease gene mig-17 can suppress the pharyngeal twist in mig-6 mutants and identify several alleles of other ECM-related genes that can cause or influence the Twp phenotype, including alleles of fibulin (fbl-1), perlecan (unc-52), collagens (cle-1, dpy-7), laminins (lam-1, lam-3), one ADAM protease (sup-17), and one ADAMTS protease (adt-1). The Twp phenotype in C. elegans is easily monitored using light microscopy, is quantitative via measurements of the torsion angle, and reveals that ECM components, metalloproteinases, and ECM attachment molecules are important for this organ to retain its correct shape during post-embryonic growth. The Twp phenotype is therefore a promising experimental system to study ECM remodeling and diseases.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Matriz Extracelular/genética , Modelos Animales , Faringe/crecimiento & desarrollo , Alelos , Animales , Membrana Basal/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Mapeo Cromosómico , Desintegrinas/metabolismo , Matriz Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Genes de Helminto/genética , Genotipo , Metaloendopeptidasas/metabolismo , Mutación/genética , Especificidad de Órganos/genética , Faringe/anomalías , Faringe/enzimología , Faringe/patología , Fenotipo , Interferencia de ARN , Anomalía Torsional/patología
5.
BMC Dev Biol ; 10: 55, 2010 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-20497576

RESUMEN

BACKGROUND: Teneurins are transmembrane proteins that assist morphogenetic processes in many organisms. ten-1 is the C. elegans teneurin homolog with two transcripts, ten-1a and ten-1b, that respectively encode a long (TEN-1L) and short (TEN-1S) form of the protein. We previously isolated a C. elegans mutant where one pharyngeal neuron was frequently misplaced, and now show that it corresponds to a novel allele of ten-1. RESULTS: The novel ten-1(et5) allele is a hypomorph since its post-embryonic phenotype is weaker than the null alleles ten-1(ok641) and ten-1(tm651). ten-1 mutants have defects in all pharyngeal neurons that we examined, and in vivo reporters show that only the long form of the ten-1 gene is expressed in the pharynx, specifically in six marginal cells and the M2 neurons. Defects in the pharyngeal M2 neurons were enhanced when the ten-1(ok641) mutation was combined with mutations in the following genes: mig-14, unc-5, unc-51, unc-52 and unc-129. None of the body neurons examined show any defects in the ten-1(ok641) mutant, but genetic interaction studies reveal that ten-1(ok641) is synthetic lethal with sax-3, unc-34 and unc-73, and examination of the hypodermal cells in embryos of the ten-1(ok641) mutant point to a role of ten-1 during hypodermal cell morphogenesis. CONCLUSIONS: Our results are consistent with ten-1 normally providing a function complementary to the cytoskeletal remodeling processes that occur in migrating cells or cells undergoing morphogenesis. It is possible that ten-1 influences the composition/distribution of extracellular matrix.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de la Membrana/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Faringe/inervación
6.
Proc Natl Acad Sci U S A ; 106(43): 18285-90, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19826081

RESUMEN

Statins are compounds prescribed to lower blood cholesterol in millions of patients worldwide. They act by inhibiting HMG-CoA reductase, the rate-limiting enzyme in the mevalonate pathway that leads to the synthesis of farnesyl pyrophosphate, a precursor for cholesterol synthesis and the source of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C. elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER stress. UPR induction was also observed upon pharmacological inhibition of farnesyl transferases or RNAi inhibition of a specific isoprenoid transferase (M57.2) and found to be dependent on both ire-1 and xbp-1 but not on pek-1 or atf-6, which are all known regulators of the UPR. The lipid stores and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C. elegans. These results provide a mechanism for the pleiotropic effects of statins and suggest that statins could be used clinically where UPR activation may be of therapeutic benefit.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Geraniltranstransferasa/antagonistas & inhibidores , Larva/efectos de los fármacos , Larva/enzimología , Larva/crecimiento & desarrollo , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas/metabolismo , Fenotipo , Pliegue de Proteína/efectos de los fármacos , Prenilación de Proteína/efectos de los fármacos , Interferencia de ARN , Especificidad por Sustrato
7.
Dev Biol ; 311(1): 185-99, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17916347

RESUMEN

The invariant cell-cell interactions occurring during C. elegans development offer unique opportunities to discover how growing axons may receive guidance cues from neighboring cells. The mnm-2 mutant was isolated because of its defects in the axon trajectory of the bilateral M2 pharyngeal neurons in C. elegans. We found that mnm-2 enhances the effects of many growth cone guidance mutations on these axons, suggesting that it performs a novel function during axon guidance. We cloned mnm-2 and found that it encodes a protein with three C2H2 zinc finger domains related to the Krüppel-like Factor protein family. mnm-2 is expressed only transiently in the M2 neuron, but exhibits a sustained expression in its sister cell, the M3 neuron. Strikingly, the expression of mnm-2 is not sustained in the M3 cell of the mnm-2 mutant, indicating that this gene positively regulates itself in that cell. Electropharyngeograms also indicate that the M3 cell is functionally impaired in the mnm-2 mutant. We used an M3-specific promoter to show that the M2 axon defect can be rescued by expression of mnm-2 in its sister cell M3. The same promoter was used to express the pro-apoptotic gene egl-1 to kill the M3 cell, which resulted in an M2 axon guidance defect similar to that found in the mnm-2 mutant. Our results suggest an M2 axon guidance model in which the M3 cell provides an important signal to the growth cone of its sister M2 and that this signal and the proper differentiation of M3 both depend on mnm-2 expression. This mechanism of axon guidance regulation allows fine-tuning of trajectories between sister cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Conos de Crecimiento/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/genética , Datos de Secuencia Molecular , Mutación
8.
Autophagy ; 3(1): 51-3, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17102585

RESUMEN

Autophagy is a catabolic process in which long-lived proteins and organelles are degraded for recycling in the cytoplasm. In the nematode Caenorhabditis elegans autophagy is associated with formation of the dauer larva, an alternative developmental stage that worms can enter under poor growth conditions. We have shown that C. elegans mutants that experience caloric restriction because they are feeding-defective also exhibit elevated autophagy and decreased levels of fat deposits, as well as smaller cells and, consequently, a smaller body size. Our results suggest novel relationships between caloric restriction, longevity, body size and autophagy.


Asunto(s)
Autofagia/fisiología , Caenorhabditis elegans/fisiología , Restricción Calórica , Animales , Animales Modificados Genéticamente , Tamaño Corporal , Ingestión de Alimentos/fisiología , Longevidad/fisiología , Modelos Biológicos
9.
BMC Dev Biol ; 6: 39, 2006 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-16884547

RESUMEN

BACKGROUND: Mutations that cause feeding defects in the nematode C. elegans are known to increase life span. Here we show that feeding defective mutants also have a second general trait in common, namely that they are small. RESULTS: Our measurements of the body lengths of a variety of feeding defective mutants, or of a variety of double mutants affecting other pathways that regulate body length in C. elegans, i.e. the DBL-1/TGFbeta, TAX-6/calcineurin and the SMA-1/betaH-spectrin pathways, indicate that food uptake acts as a separate pathway regulating body length. In early stages, before eating begins, feeding defective worms have no defect in body length or, in some cases, have only slightly smaller body length compared to wild-type. A significant difference in body length is first noticeable at later larval stages, a difference that probably correlates with increasing starvation. We also show that autophagy is induced and that the quantity of fat is decreased in starved worms. CONCLUSION: Our results indicate that the long-term starvation seen in feeding-defective C. elegans mutants activates autophagy, and leads to depletion of fat deposits, small cell size and small body size.


Asunto(s)
Autofagia , Tamaño Corporal , Caenorhabditis elegans/fisiología , Mutación , Animales , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/genética , Conducta Alimentaria , Longevidad
10.
Dev Biol ; 297(2): 446-60, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16806153

RESUMEN

pha-2 is the Caenorhabditis elegans homolog of the vertebrate homeobox gene Hex. Embryonic expression of pha-2 is mostly pharyngeal and the only described mutant allele of pha-2 results in a severe pharyngeal defect in which certain muscle cells (pm5 cells) and neurons are grossly deformed. Here, we performed a detailed characterization of the pha-2 phenotype using cell-type-specific reporters, physical manipulation of the nuclei in pharyngeal muscle cells using "optical tweezers", electron microscopy, staining of the actin cytoskeleton as well as phenotypic rescue and ectopic expression experiments. The main findings of the present study are (i) the pha-2 (ad472) mutation specifically impairs the pharyngeal expression of pha-2; (ii) in the pha-2 mutant, the cytoskeleton of the pm5 cells is measurably weaker than in normal cells and is severely disrupted by large tubular structures and organelles; (iii) the pm5 cells of the pha-2 mutant fail to express the acetylcholinesterase genes ace-1 and ace-2; (iv) ectopic expression of pha-2 can induce ectopic expression of ace-1 and ace-2; and (v) the anc-1 mutant with mislocalized pm5 cell nuclei occasionally shows an isthmus phenotype similar to that of pha-2 worms.


Asunto(s)
Acetilcolinesterasa/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Músculos/embriología , Faringe/embriología , Acetilcolinesterasa/química , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Caenorhabditis elegans , Citoesqueleto/metabolismo , Datos de Secuencia Molecular , Músculos/citología , Faringe/citología
11.
Acta Pharmacol Sin ; 26(4): 396-404, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15780187

RESUMEN

The Caenorhabditis elegans pharynx is a neuromuscular tube of which the function is to pump and crush bacteria, and inject them into the intestine. The 80-cell pharynx develops via the morphogenesis and differentiation of the cells that compose its semi-spherical primordium, and requires the activity of several evolutionarily conserved genes, such as pha-4 (the homolog to the Drosophila forkhead and vertebrate FoxA), ceh-22 (the homolog to the Drosophila tinman and vertebrate Nkx2.5), and pha-2 (the homolog to the vertebrate Hex). There are 20 neurons in the pharynx, each with a reproducible unique trajectory. Developmental genetic analysis of axon guidance in the pharynx indicates that some axon trajectories are in part established without growth cones, whereas other parts necessitate growth cone function and guidance. Here we provide an overview of the developmental genetics of the Caenorhabditis elegans pharynx, with an emphasis on its nervous system.


Asunto(s)
Caenorhabditis elegans/embriología , Sistema Nervioso/embriología , Faringe/embriología , Animales , Axones/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Conos de Crecimiento/fisiología , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Faringe/metabolismo , Faringe/fisiología , Transactivadores/genética , Transactivadores/metabolismo
12.
Dev Biol ; 272(2): 403-18, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15282157

RESUMEN

The pha-2 mutant was isolated in 1993 by Leon Avery in a screen for worms with visible defects in pharyngeal feeding behavior. In pha-2 mutant worms, the pharyngeal isthmus is abnormally thick and short and, in contrast to wild-type worms, harbors several cell nuclei. We show here that pha-2 encodes a homeodomain protein and is homologous to the vertebrate homeobox gene, Hex (also known as Prh). Consistent with a function in pharyngeal development, the pha-2 gene is expressed in the pharyngeal primordium of Caenorhabditis elegans embryos, particularly in pm5 cells that form the bulk of the isthmus. We show that in the pha-2 mutant there is a failure of the pm5 cells to elongate anteriorly while keeping their nuclei within the nascent posterior bulb to form the isthmus during the 3-fold embryonic stage. We also present evidence that pha-2 regulates itself positively in pm5 cells, that it is a downstream target of the forkhead gene pha-4, and that it may also act in the isthmus as an inhibitor of the ceh-22 gene, an Nkx2.5 homolog. Finally, we have begun characterizing the regulation of the pha-2 gene and find that intronic sequences are essential for the complete pha-2 expression profile. The present report is the first to examine the expression and function of an invertebrate Hex homolog, that is, the C. elegans pha-2 gene.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Faringe/embriología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Embrión no Mamífero , Intrones , Datos de Secuencia Molecular , Mutación , Músculos Faríngeos/embriología , Músculos Faríngeos/patología , Faringe/patología , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Transactivadores/genética , Factores de Transcripción/genética
13.
Dev Biol ; 260(1): 158-75, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12885562

RESUMEN

We wish to understand how the trajectories of the twenty pharyngeal neurons of C. elegans are established. In this study we focused on the two bilateral M2 pharyngeal motorneurons, which each have their cell body located in the posterior bulb and send one axon through the isthmus and into the metacorpus. We used a GFP reporter to visualize these neurons in cell-autonomous and cell-non-autonomous axon guidance mutant backgrounds, as well as other mutant classes. Our main findings are: 1). Mutants with impaired growth cone functions, such as unc-6, unc-51, unc-73 and sax-3, often exhibit abnormal terminations and inappropriate trajectories at the distal ends of the M2 axons, i.e. within the metacorpus; and 2). Growth cone function mutants never exhibit abnormalities in the proximal part of the M2 neuron trajectories, i.e. between the cell body and the metacorpus. Our results suggest that the proximal and distal trajectories are established using distinct mechanisms, including a growth cone-independent process to establish the proximal trajectory. We isolated five novel mutants in a screen for worms exhibiting abnormal morphology of the M2 neurons. These mutants define a new gene class designated mnm (M neuron morphology abnormal).


Asunto(s)
Axones/fisiología , Caenorhabditis elegans/genética , Faringe/fisiología , Animales , Animales Modificados Genéticamente , Autoantígenos/genética , Autoantígenos/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Genes de Helminto , Genes Reporteros , Proteínas Fluorescentes Verdes , Conos de Crecimiento/fisiología , Cinética , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Mutagénesis , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Faringe/citología , Proteínas Recombinantes de Fusión/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA