Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 272: 116455, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38728868

RESUMEN

The selectin family consisting of E-, P- and L-selectin plays dominant roles in atherosclerosis, ischemia-reperfusion injury, inflammatory diseases, and metastatic spreading of some cancers. An early goal in selectin-targeted drug discovery campaigns was to identify ligands binding to all three selectins, so-called pan-selectin antagonists. The physiological epitope, tetrasaccharide sialyl Lewisx (sLex, 1) binds to all selectins, albeit with very different affinities. Whereas P- and L-selectin require additional interactions contributed by sulfate groups for high binding affinity, E-selectin can functionally bind sLex-modified glycolipids and glycoproteins. Rivipansel (3) marked the first pan-selectin antagonist, which simultaneously interacted with both the sLex and the sulfate binding site. The aim of this contribution was to improve the pan-selectin affinity of rivipansel (3) by leveraging a new class of sLex mimetics in combination with an optimized linker length to the sulfate bearing group. As a result, the pan-selectin antagonist 11b exhibits an approximatively 5-fold improved affinity for E-, as well as P-selectin.


Asunto(s)
Selectinas , Humanos , Selectinas/metabolismo , Relación Estructura-Actividad , Oligosacáridos/química , Oligosacáridos/farmacología , Oligosacáridos/síntesis química , Estructura Molecular , Antígeno Sialil Lewis X , Relación Dosis-Respuesta a Droga , Selectina E/metabolismo , Selectina E/antagonistas & inhibidores , Glucolípidos
2.
J Biol Chem ; 300(6): 107363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735475

RESUMEN

Cryptophycins are microtubule-targeting agents (MTAs) that belong to the most potent antimitotic compounds known to date; however, their exact molecular mechanism of action remains unclear. Here, we present the 2.2 Å resolution X-ray crystal structure of a potent cryptophycin derivative bound to the αß-tubulin heterodimer. The structure addresses conformational issues present in a previous 3.3 Å resolution cryo-electron microscopy structure of cryptophycin-52 bound to the maytansine site of ß-tubulin. It further provides atomic details on interactions of cryptophycins, which had not been described previously, including ones that are in line with structure-activity relationship studies. Interestingly, we discovered a second cryptophycin-binding site that involves the T5-loop of ß-tubulin, a critical secondary structure element involved in the exchange of the guanosine nucleotide and in the formation of longitudinal tubulin contacts in microtubules. Cryptophycins are the first natural ligands found to bind to this new "ßT5-loop site" that bridges the maytansine and vinca sites. Our results offer unique avenues to rationally design novel MTAs with the capacity to modulate T5-loop dynamics and to simultaneously engage multiple ß-tubulin binding sites.


Asunto(s)
Maitansina , Tubulina (Proteína) , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Maitansina/química , Maitansina/análogos & derivados , Humanos , Cristalografía por Rayos X , Sitios de Unión , Microtúbulos/metabolismo , Microtúbulos/química , Alcaloides de la Vinca/química , Alcaloides de la Vinca/metabolismo
3.
Angew Chem Int Ed Engl ; 62(52): e202314280, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37947772

RESUMEN

Carbohydrate-binding proteins are generally characterized by poor affinities for their natural glycan ligands, predominantly due to the shallow and solvent-exposed binding sites. To overcome this drawback, nature has exploited multivalency to strengthen the binding by establishing multiple interactions simultaneously. The development of oligovalent structures frequently proved to be successful, not only for proteins with multiple binding sites, but also for proteins that possess a single recognition domain. Herein we present the syntheses of a number of oligovalent ligands for Siglec-8, a monomeric I-type lectin found on eosinophils and mast cells, alongside the thermodynamic characterization of their binding. While the enthalpic contribution of each binding epitope was within a narrow range to that of the monomeric ligand, the entropy penalty increased steadily with growing valency. Additionally, we observed a successful agonistic binding of the tetra- and hexavalent and, to an even larger extent, multivalent ligands to Siglec-8 on immune cells and modulation of immune cell activation. Thus, triggering a biological effect is not restricted to multivalent ligands but could be induced by low oligovalent ligands as well, whereas a monovalent ligand, despite binding with similar affinity, showed an antagonistic effect.


Asunto(s)
Eosinófilos , Polisacáridos , Ligandos , Polisacáridos/química , Eosinófilos/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo
4.
Elife ; 122023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876916

RESUMEN

Paclitaxel (Taxol) is a taxane and a chemotherapeutic drug that stabilizes microtubules. While the interaction of paclitaxel with microtubules is well described, the lack of high-resolution structural information on a tubulin-taxane complex precludes a comprehensive description of the binding determinants that affect its mechanism of action. Here, we solved the crystal structure of baccatin III the core moiety of paclitaxel-tubulin complex at 1.9 Å resolution. Based on this information, we engineered taxanes with modified C13 side chains, solved their crystal structures in complex with tubulin, and analyzed their effects on microtubules (X-ray fiber diffraction), along with those of paclitaxel, docetaxel, and baccatin III. Further comparison of high-resolution structures and microtubules' diffractions with the apo forms and molecular dynamics approaches allowed us to understand the consequences of taxane binding to tubulin in solution and under assembled conditions. The results sheds light on three main mechanistic questions: (1) taxanes bind better to microtubules than to tubulin because tubulin assembly is linked to a ßM-loopconformational reorganization (otherwise occludes the access to the taxane site) and, bulky C13 side chains preferentially recognize the assembled conformational state; (2) the occupancy of the taxane site has no influence on the straightness of tubulin protofilaments and; (3) longitudinal expansion of the microtubule lattices arises from the accommodation of the taxane core within the site, a process that is no related to the microtubule stabilization (baccatin III is biochemically inactive). In conclusion, our combined experimental and computational approach allowed us to describe the tubulin-taxane interaction in atomic detail and assess the structural determinants for binding.


Asunto(s)
Taxoides , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Taxoides/farmacología , Taxoides/química , Taxoides/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacología , Paclitaxel/química
5.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985569

RESUMEN

The d-GlcNAc moiety in sialyl Lewisx (sLex, 1) acts predominantly as a linker to position the d-Gal and the l-Fuc moieties in the bioactive spatial orientation. The hypothesis has been made that the NHAc group of GlcNAc pushes the fucose underneath the galactose and, thus, contributes to the stabilization of the bioactive conformation of the core of sLex (1). To test this hypothesis, GlcNAc mimetics consisting of (R,R)-1,2-cyclohexanediols substituted with alkyl and aryl substituents adjacent to the linking position of the fucose moiety were synthesized. To explore a broad range of extended and spatially demanding R-groups, an enzymatic approach for the synthesis of 3-alkyl/aryl-1,2-cyclohexanediols (3b-n) was applied. These cyclohexanediol derivatives were incorporated into the sLex mimetics 2b-n. For analyzing the relationship of affinity and core conformation, a 1H NMR structural-reporter-group concept was applied. Thus, the chemical shift of H-C5Fuc proved to be a sensitive indicator for the degree of pre-organization of the core of this class of sLex mimetics and therefore could be used to quantify the contribution of the R-groups.


Asunto(s)
Fucosa , Oligosacáridos , Antígeno Sialil Lewis X , Oligosacáridos/química , Fucosa/química , Conformación Molecular , Espectroscopía de Resonancia Magnética
6.
Nat Commun ; 14(1): 903, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36807348

RESUMEN

The binding and release of ligands from their protein targets is central to fundamental biological processes as well as to drug discovery. Photopharmacology introduces chemical triggers that allow the changing of ligand affinities and thus biological activity by light. Insight into the molecular mechanisms of photopharmacology is largely missing because the relevant transitions during the light-triggered reaction cannot be resolved by conventional structural biology. Using time-resolved serial crystallography at a synchrotron and X-ray free-electron laser, we capture the release of the anti-cancer compound azo-combretastatin A4 and the resulting conformational changes in tubulin. Nine structural snapshots from 1 ns to 100 ms complemented by simulations show how cis-to-trans isomerization of the azobenzene bond leads to a switch in ligand affinity, opening of an exit channel, and collapse of the binding pocket upon ligand release. The resulting global backbone rearrangements are related to the action mechanism of microtubule-destabilizing drugs.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Cristalografía , Ligandos , Microtúbulos/metabolismo , Cristalografía por Rayos X
7.
Eur J Med Chem ; 241: 114614, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35939994

RESUMEN

Microtubules (MTs) are dynamic filaments of the cytoskeleton, which are formed by the polymerization of their building block tubulin. Perturbation of MT dynamics by MT-targeting agents (MTAs) leads to cell cycle arrest or cell death, a strategy that is pursued in chemotherapy. We recently performed a combined computational and crystallographic fragment screening approach and identified several tubulin-binding fragments. Here, we sought to capitalize on this study with the aim to demonstrate that low affinity tubulin-binding fragments can indeed be used as valuable starting points for the development of active, lead-like antitubulin small molecules. To this end, we report on a new, rationally designed series of 2-aminobenzimidazole derivatives that destabilize MTs by binding tubulin at the colchicine-binding site (CBS). We applied a fragment growing strategy by combining X-ray crystallography and computer-aided drug design. Preliminary structure-activity-relationship studies afforded compound 18 that inhibits HeLa cell viability with a submicromolar activity (IC50 of 0.9 µM). X-ray crystallography confirmed the compound pose in the CBS, while immunostaining experiments suggested a molecular mechanism of action alike classical CBS ligands with antimitotic and antitumor activity associated with MTs destabilization. This promising outcome underpins that our previously performed combined computational and crystallographic fragment screening approach provides promising starting points for developing new MTAs binding to the CBS of tubulin and, eventually, to further tubulin pockets.


Asunto(s)
Antineoplásicos , Colchicina , Antineoplásicos/química , Sitios de Unión , Proliferación Celular , Colchicina/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
8.
Nat Chem ; 14(10): 1133-1141, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35953642

RESUMEN

Recent high-pressure NMR results indicate that the preactive conformation of the ß1-adrenergic receptor (ß1AR) harbours completely empty cavities of ~100 Å3 volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized ß1AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized ß1AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for ß1AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of ß1AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.


Asunto(s)
Detergentes , Receptores Acoplados a Proteínas G , Regulación Alostérica , Colesterol , Isoproterenol , Xenón
9.
EMBO Rep ; 23(7): e53956, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35548920

RESUMEN

To investigate the class-dependent properties of anti-viral IgM antibodies, we use membrane antigen capture activated cell sorting to isolate spike-protein-specific B cells from donors recently infected with SARS-CoV-2, allowing production of recombinant antibodies. We isolate 20, spike-protein-specific antibodies of classes IgM, IgG, and IgA, none of which shows any antigen-independent binding to human cells. Two antibodies of class IgM mediate virus neutralization at picomolar concentrations, but this potency is lost following artificial switch to IgG. Although, as expected, the IgG versions of the antibodies appear to have lower avidity than their IgM parents, this is not sufficient to explain the loss of potency.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales , Anticuerpos Antivirales , Humanos , Inmunoglobulina G , Inmunoglobulina M
10.
Angew Chem Int Ed Engl ; 61(25): e202204052, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35404502

RESUMEN

In this study, we capitalized on our previously performed crystallographic fragment screen and developed the antitubulin small molecule Todalam with only two rounds of straightforward chemical synthesis. Todalam binds to a novel tubulin site, disrupts microtubule networks in cells, arrests cells in G2/M, induces cell death, and synergizes with vinblastine. The compound destabilizes microtubules by acting as a molecular plug that sterically inhibits the curved-to-straight conformational switch in the α-tubulin subunit, and by sequestering tubulin dimers into assembly incompetent oligomers. Our results describe for the first time the generation of a fully rationally designed small molecule tubulin inhibitor from a fragment, which displays a unique molecular mechanism of action. They thus demonstrate the usefulness of tubulin-binding fragments as valuable starting points for innovative antitubulin drug and chemical probe discovery campaigns.


Asunto(s)
Moduladores de Tubulina , Tubulina (Proteína) , Muerte Celular , Microtúbulos/metabolismo , Unión Proteica , Tubulina (Proteína)/química , Moduladores de Tubulina/química
11.
Methods Mol Biol ; 2430: 349-374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35476344

RESUMEN

Since the first moderate resolution, structural description of Taxol bound to tubulin by electron crystallography in 1998, several tubulin crystal systems have been developed and optimized for the high-resolution analysis of tubulin-ligand complexes by X-ray crystallography. Here we describe three tubulin crystal systems that have allowed investigating the molecular mechanisms of action of a large number of diverse anti-tubulin agents.


Asunto(s)
Citoesqueleto , Tubulina (Proteína) , Cristalización , Cristalografía por Rayos X , Citoesqueleto/metabolismo , Ligandos , Tubulina (Proteína)/metabolismo
12.
ChemMedChem ; 17(1): e202100634, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34870892

RESUMEN

Because of their large polar surface area, carbohydrates often exhibit insufficient pharmacokinetic properties. Specifically, the carboxylic acid function of the tetrasaccharide sialyl Lewisx , a pharmacophore crucial for the formation of a salt bridge with selectins, prevents oral availability. A common approach is the transfer of carboxylic acid into ester prodrugs. Once the prodrug is either actively or passively absorbed, the active principle is released by hydrolysis. In the present study, ester prodrugs of selectin antagonists with aliphatic promoieties were synthesized and their potential for oral availability was investigated in vitro and in vivo. The addition of lipophilic ester moieties to overcome insufficient lipophilicity improved passive permeation into enterocytes, however at the same time supported efflux back to the small intestines as well as oxidation into non-hydrolysable metabolites. In summary, our examples demonstrate that different modifications of carbohydrates can result in opposing effects and have to be studied in their entirety.


Asunto(s)
Selectina E/antagonistas & inhibidores , Ésteres/farmacología , Profármacos/farmacología , Administración Oral , Animales , Disponibilidad Biológica , Células CACO-2 , Relación Dosis-Respuesta a Droga , Selectina E/metabolismo , Ésteres/administración & dosificación , Ésteres/química , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Profármacos/administración & dosificación , Profármacos/química , Ratas , Relación Estructura-Actividad
13.
Mol Cancer Ther ; 20(10): 1846-1857, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34315764

RESUMEN

PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical in vitro anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma. Using X-ray crystallography, it was determined that PTC596 binds to the colchicine site of tubulin with unique key interactions. PTC596 exhibited broad-spectrum anticancer activity. PTC596 showed efficacy as monotherapy and additive or synergistic efficacy in combinations in mouse models of leiomyosarcomas and glioblastoma. PTC596 demonstrated efficacy in an orthotopic model of glioblastoma under conditions where temozolomide was inactive. In a first-in-human phase I clinical trial in patients with cancer, PTC596 monotherapy drug exposures were compared with those predicted to be efficacious based on mouse models. PTC596 is currently being tested in combination with dacarbazine in a clinical trial in adults with leiomyosarcoma and in combination with radiation in a clinical trial in children with diffuse intrinsic pontine glioma.


Asunto(s)
Bencimidazoles/farmacología , Glioblastoma/tratamiento farmacológico , Leiomiosarcoma/tratamiento farmacológico , Pirazinas/farmacología , Moduladores de Tubulina/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Bencimidazoles/farmacocinética , Proliferación Celular , Femenino , Glioblastoma/patología , Humanos , Leiomiosarcoma/patología , Masculino , Dosis Máxima Tolerada , Ratones , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Pirazinas/farmacocinética , Distribución Tisular , Moduladores de Tubulina/farmacocinética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Angew Chem Int Ed Engl ; 60(24): 13331-13342, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33951246

RESUMEN

Tubulin plays essential roles in vital cellular activities and is the target of a wide range of proteins and ligands. Here, using a combined computational and crystallographic fragment screening approach, we addressed the question of how many binding sites exist in tubulin. We identified 27 distinct sites, of which 11 have not been described previously, and analyzed their relationship to known tubulin-protein and tubulin-ligand interactions. We further observed an intricate pocket communication network and identified 56 chemically diverse fragments that bound to 10 distinct tubulin sites. Our results offer a unique structural basis for the development of novel small molecules for use as tubulin modulators in basic research applications or as drugs. Furthermore, our method lays down a framework that may help to discover new pockets in other pharmaceutically important targets and characterize them in terms of chemical tractability and allosteric modulation.


Asunto(s)
Ligandos , Tubulina (Proteína)/metabolismo , Regulación Alostérica , Sitios de Unión , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Unión Proteica , Tubulina (Proteína)/química , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo
15.
Mol Pharmacol ; 98(2): 156-167, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32591477

RESUMEN

The natural product (+)-discodermolide (DDM) is a microtubule stabilizing agent and potent inducer of senescence. We refined the structure of DDM and evaluated the activity of novel congeners in triple negative breast and ovarian cancers, malignancies that typically succumb to taxane resistance. Previous structure-activity analyses identified the lactone and diene as moieties conferring anticancer activity, thus identifying priorities for the structural refinement studies described herein. Congeners possessing the monodiene with a simplified lactone had superior anticancer efficacy relative to taxol, particularly in resistant models. Specifically, one of these congeners, B2, demonstrated 1) improved pharmacologic properties, specifically increased maximum response achievable and area under the curve, and decreased EC50; 2) a uniform dose-response profile across genetically heterogeneous cancer cell lines relative to taxol or DDM; 3) reduced propensity for senescence induction relative to DDM; 4) superior long-term activity in cancer cells versus taxol or DDM; and 5) attenuation of metastatic characteristics in treated cancer cells. To contrast the binding of B2 versus DDM in tubulin, X-ray crystallography studies revealed a shift in the position of the lactone ring associated with removal of the C2-methyl and C3-hydroxyl. Thus, B2 may be more adaptable to changes in the taxane site relative to DDM that could account for its favorable properties. In conclusion, we have identified a DDM congener with broad range anticancer efficacy that also has decreased risk of inducing chemotherapy-mediated senescence. SIGNIFICANCE STATEMENT: Here, we describe the anticancer activity of novel congeners of the tubulin-polymerizing molecule (+)-discodermolide. A lead molecule is identified that exhibits an improved dose-response profile in taxane-sensitive and taxane-resistant cancer cell models, diminished risk of chemotherapy-mediated senescence, and suppression of tumor cell invasion endpoints. X-ray crystallography studies identify subtle changes in the pose of binding to ß-tubulin that could account for the improved anticancer activity. These findings support continued preclinical development of discodermolide, particularly in the chemorefractory setting.


Asunto(s)
Alcanos/química , Carbamatos/química , Lactonas/síntesis química , Neoplasias Ováricas/metabolismo , Pironas/química , Neoplasias de la Mama Triple Negativas/metabolismo , Moduladores de Tubulina/síntesis química , Células A549 , Área Bajo la Curva , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Lactonas/química , Lactonas/farmacología , Estructura Molecular , Neoplasias Ováricas/tratamiento farmacológico , Taxoides/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
16.
iScience ; 21: 95-109, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31655259

RESUMEN

Tubulin is one of the best validated anti-cancer targets, but most anti-tubulin agents have unfavorable therapeutic indexes. Here, we characterized the tubulin-binding activity, the mechanism of action, and the in vivo anti-leukemia efficacy of three 3,4,5-trimethoxy-N-acylhydrazones. We show that all compounds target the colchicine-binding site of tubulin and that none is a substrate of ABC transporters. The crystal structure of the tubulin-bound N-(1'-naphthyl)-3,4,5-trimethoxybenzohydrazide (12) revealed steric hindrance on the T7 loop movement of ß-tubulin, thereby rendering tubulin assembly incompetent. Using dose escalation and short-term repeated dose studies, we further report that this compound class is well tolerated to >100 mg/kg in mice. We finally observed that intraperitoneally administered compound 12 significantly prolonged the overall survival of mice transplanted with both sensitive and multidrug-resistant acute lymphoblastic leukemia (ALL) cells. Taken together, this work describes promising colchicine-site-targeting tubulin inhibitors featuring favorable therapeutic effects against ALL and multidrug-resistant cells.

17.
Cell Syst ; 9(1): 74-92.e8, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31302152

RESUMEN

There is an unmet need for new antimitotic drug combinations that target cancer-specific vulnerabilities. Based on our finding of elevated biomolecule oxidation in mitotically arrested cancer cells, we combined Plk1 inhibitors with TH588, an MTH1 inhibitor that prevents detoxification of oxidized nucleotide triphosphates. This combination showed robust synergistic killing of cancer, but not normal, cells that, surprisingly, was MTH1-independent. To dissect the underlying synergistic mechanism, we developed VISAGE, a strategy integrating experimental synergy quantification with computational-pathway-based gene expression analysis. VISAGE predicted, and we experimentally confirmed, that this synergistic combination treatment targeted the mitotic spindle. Specifically, TH588 binding to ß-tubulin impaired microtubule assembly, which when combined with Plk1 blockade, synergistically disrupted mitotic chromosome positioning to the spindle midzone. These findings identify a cancer-specific mitotic vulnerability that is targetable using Plk1 inhibitors with microtubule-destabilizing agents and highlight the general utility of the VISAGE approach to elucidate molecular mechanisms of drug synergy.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores de Crecimiento/uso terapéutico , Neoplasias/tratamiento farmacológico , Pirimidinas/uso terapéutico , Huso Acromático/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Biología Computacional , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Huso Acromático/fisiología , Tubulina (Proteína)/metabolismo , Quinasa Tipo Polo 1
18.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897704

RESUMEN

It has been proposed that one of the mechanisms of taxane-site ligand-mediated tubulin activation is modulation of the structure of a switch element (the M-loop) from a disordered form in dimeric tubulin to a folded helical structure in microtubules. Here, we used covalent taxane-site ligands, including cyclostreptin, to gain further insight into this mechanism. The crystal structure of cyclostreptin-bound tubulin reveals covalent binding to ßHis229, but no stabilization of the M-loop. The capacity of cyclostreptin to induce microtubule assembly compared to other covalent taxane-site agents demonstrates that the induction of tubulin assembly is not strictly dependent on M-loop stabilization. We further demonstrate that most covalent taxane-site ligands are able to partially overcome drug resistance mediated by ßIII-tubulin (ßIII) overexpression in HeLa cells, and compare their activities to pironetin, an interfacial covalent inhibitor of tubulin assembly that displays invariant growth inhibition in these cells. Our findings suggest a relationship between a diminished interaction of taxane-site ligands with ßIII-tubulin and ßIII tubulin-mediated drug resistance. This supports the idea that overexpression of ßIII increases microtubule dynamicity by counteracting the enhanced microtubule stability promoted by covalent taxane-site binding ligands.


Asunto(s)
Microtúbulos/química , Compuestos Policíclicos/química , Tubulina (Proteína)/química , Resistencia a Antineoplásicos , Ácido Edético/química , Células HeLa , Humanos , Espectrometría de Masas , Taxoides/química
19.
J Cell Biol ; 218(4): 1298-1318, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30770434

RESUMEN

Kinesin-1 is responsible for microtubule-based transport of numerous cellular cargoes. Here, we explored the regulation of kinesin-1 by MAP7 proteins. We found that all four mammalian MAP7 family members bind to kinesin-1. In HeLa cells, MAP7, MAP7D1, and MAP7D3 act redundantly to enable kinesin-1-dependent transport and microtubule recruitment of the truncated kinesin-1 KIF5B-560, which contains the stalk but not the cargo-binding and autoregulatory regions. In vitro, purified MAP7 and MAP7D3 increase microtubule landing rate and processivity of kinesin-1 through transient association with the motor. MAP7 proteins promote binding of kinesin-1 to microtubules both directly, through the N-terminal microtubule-binding domain and unstructured linker region, and indirectly, through an allosteric effect exerted by the kinesin-binding C-terminal domain. Compared with MAP7, MAP7D3 has a higher affinity for kinesin-1 and a lower affinity for microtubules and, unlike MAP7, can be cotransported with the motor. We propose that MAP7 proteins are microtubule-tethered kinesin-1 activators, with which the motor transiently interacts as it moves along microtubules.


Asunto(s)
Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/enzimología , Mitocondrias/enzimología , Animales , Benzamidas/farmacología , Células COS , Chlorocebus aethiops , Dicetopiperazinas/farmacología , Activación Enzimática , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/genética , Mitocondrias/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
20.
ChemMedChem ; 14(7): 749-757, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30710416

RESUMEN

Antimicrobial resistance has become a serious concern for the treatment of urinary tract infections. In this context, an anti-adhesive approach targeting FimH, a bacterial lectin enabling the attachment of E. coli to host cells, has attracted considerable interest. FimH can adopt a low/medium-affinity state in the absence and a high-affinity state in the presence of shear forces. Until recently, mostly the high-affinity state has been investigated, despite the fact that a therapeutic antagonist should bind predominantly to the low-affinity state. In this communication, we demonstrate that fluorination of biphenyl α-d-mannosides leads to compounds with perfect π-π stacking interactions with the tyrosine gate of FimH, yielding low nanomolar to sub-nanomolar KD values for the low- and high-affinity states, respectively. The face-to-face alignment of the perfluorinated biphenyl group of FimH ligands and Tyr48 was confirmed by crystal structures as well as 1 H,15 N-HSQC NMR analysis. Finally, fluorination improves pharmacokinetic parameters predictive for oral availability.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Proteínas Fimbrias/antagonistas & inhibidores , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacocinética , Adhesión Bacteriana/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Escherichia coli/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Polarización de Fluorescencia , Espectroscopía de Resonancia Magnética , Manósidos/administración & dosificación , Manósidos/química , Manósidos/farmacocinética , Manósidos/farmacología , Conformación Proteica , Electricidad Estática , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...