Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 288: 154059, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37586271

RESUMEN

Iron (Fe) is an essential element for photosynthetic organisms, required for several vital biological functions. Photosynthesis, which takes place in the chloroplasts of higher plants, is the major Fe consumer. Although the components of the root Fe uptake system in dicotyledonous and monocotyledonous plants have been extensively studied, the Fe transport mechanisms of chloroplasts in these two groups of plants have received little attention. This review focuses on the comparative analysis of Fe transport processes in the evolutionary ancestors of chloroplasts (cyanobacteria) with the processes in embryophytes and green algae (Viridiplantae). The aim is to summarize how chloroplasts are integrated into cellular Fe homeostasis and how Fe transporters and Fe transport mechanisms have been modified by evolution.


Asunto(s)
Arabidopsis , Cloroplastos/metabolismo , Fotosíntesis , Transporte Biológico , Hierro/metabolismo , Plantas
2.
NanoImpact ; 29: 100444, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470408

RESUMEN

Nanoscale Fe containing particles can penetrate the root apoplast. Nevertheless, cell wall size exclusion questions that for Fe mobilisation, a close contact between the membrane integrating FERRIC REDUCTASE OXIDASE (FRO) enzymes and Fe containing particles is required. Haematite nanoparticle suspension, size of 10-20 nm, characterized by 57Fe Mössbauer spectroscopy, TEM, ICP and SAED was subjected to Fe utilisation by the flavin secreting model plant cucumber (Cucumis sativus). Alterations in the structure and distribution of the particles were revealed by 57Fe Mössbauer spectroscopy, HRTEM and EDS element mapping. Biological utilisation of Fe resulted in a suppression of Fe deficiency responses (expression of CsFRO 1, 2 & 3 and RIBOFLAVIN A1; CsRIBA1 genes and root ferric chelate reductase activity). Haematite nanoparticles were stacked in the middle lamella of the apoplast. Fe mobilisation is evidenced by the reduction in the particle size. Fe release from nanoparticles does not require a contact with the plasma membrane. Parallel suppression in the CsFRO 1&3 and CsRIBA1 transcript amounts support that flavin biosynthesis is an inclusive Fe deficiency response involved in the reduction-based Fe utilisation of Cucumis sativus roots. CsFRO2 is suggested to play a role in the intracellular Fe homeostasis.


Asunto(s)
Cucumis sativus , Hierro , Hierro/metabolismo , Oxidorreductasas/metabolismo , Transporte Biológico , Flavinas/metabolismo
3.
Plants (Basel) ; 11(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36365431

RESUMEN

S-methylmethionine (SMM) is a universal metabolite of higher plants derived from L-methionine that has an approved priming effect under different types of abiotic and biotic stresses. Szarvasi-1 energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) is a biomass plant increasingly applied in phytoremediation to stabilize or extract heavy metals. In this study, Szarvasi-1 was grown in a nutrient solution. As a priming agent, SMM was applied in 0.02, 0.05 and 0.1 mM concentrations prior to 0.01 mM Cd addition. The growth and physiological parameters, as well as the accumulation pattern of Cd and essential mineral nutrients, were investigated. Cd exposure decreased the root and shoot growth, chlorophyll concentration, stomatal conductance, photosystem II function and increased the carotenoid content. Except for stomatal conductance, SMM priming had a positive effect on these parameters compared to Cd treatment without priming. In addition, it decreased the translocation and accumulation of Cd. Cd treatment decreased K, Mg, Mn, Zn and P in the roots, and K, S, Cu and Zn in the shoots compared to the untreated control. SMM priming changed the pattern of nutrient uptake, of which Fe showed characteristic accumulation in the roots in response to increasing SMM concentrations. We have concluded that SMM priming exerts a positive effect on Cd-stressed Szarvasi-1 plants, which retained their physiological performance and growth. This ameliorative effect is suggested to be based on, at least partly, the lower root-to-shoot Cd translocation by the upregulated Fe uptake and transport.

4.
Front Plant Sci ; 12: 658987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093616

RESUMEN

Iron (Fe) is an essential micronutrient for plants. Due to the requirement for Fe of the photosynthetic apparatus, the majority of shoot Fe content is localised in the chloroplasts of mesophyll cells. The reduction-based mechanism has prime importance in the Fe uptake of chloroplasts operated by Ferric Reductase Oxidase 7 (FRO7) in the inner chloroplast envelope membrane. Orthologue of Arabidopsis thaliana FRO7 was identified in the Brassica napus genome. GFP-tagged construct of BnFRO7 showed integration to the chloroplast. The time-scale expression pattern of BnFRO7 was studied under three different conditions: deficient, optimal, and supraoptimal Fe nutrition in both leaves developed before and during the treatments. Although Fe deficiency has not increased BnFRO7 expression, the slight overload in the Fe nutrition of the plants induced significant alterations in both the pattern and extent of its expression leading to the transcript level suppression. The Fe uptake of isolated chloroplasts decreased under both Fe deficiency and supraoptimal Fe nutrition. Since the enzymatic characteristics of the ferric chelate reductase (FCR) activity of purified chloroplast inner envelope membranes showed a significant loss for the substrate affinity with an unchanged saturation rate, protein level regulation mechanisms are suggested to be also involved in the suppression of the reduction-based Fe uptake of chloroplasts together with the saturation of the requirement for Fe.

5.
Planta ; 251(5): 96, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32297017

RESUMEN

MAIN CONCLUSION: The accumulation of NiCo following the termination of the accumulation of iron in chloroplast suggests that NiCo is not solely involved in iron uptake processes of chloroplasts. Chloroplast iron (Fe) uptake is thought to be operated by a complex containing permease in chloroplast 1 (PIC1) and nickel-cobalt transporter (NiCo) proteins, whereas the role of other Fe homeostasis-related transporters such as multiple antibiotic resistance protein 1 (MAR1) is less characterized. Although pieces of information exist on the regulation of chloroplast Fe uptake, including the effect of plant Fe homeostasis, the whole system has not been revealed in detail yet. Thus, we aimed to follow leaf development-scale changes in the chloroplast Fe uptake components PIC1, NiCo and MAR1 under deficient, optimal and supraoptimal Fe nutrition using Brassica napus as model. Fe deficiency decreased both the photosynthetic activity and the Fe content of plastids. Supraoptimal Fe nutrition caused neither Fe accumulation in chloroplasts nor any toxic effects, thus only fully saturated the need for Fe in the leaves. In parallel with the increasing Fe supply of plants and ageing of the leaves, the expression of BnPIC1 was tendentiously repressed. Though transcript and protein amount of BnNiCo tendentiously increased during leaf development, it was even markedly upregulated in ageing leaves. The relative transcript amount of BnMAR1 increased mainly in ageing leaves facing Fe deficiency. Taken together chloroplast physiology, Fe content and transcript amount data, the exclusive participation of NiCo in the chloroplast Fe uptake is not supported. Saturation of the Fe requirement of chloroplasts seems to be linked to the delay of decomposing the photosynthetic apparatus and keeping chloroplast Fe homeostasis in a rather constant status together with a supressed Fe uptake machinery.


Asunto(s)
Brassica napus/enzimología , Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Proteínas de Transporte de Catión/genética , Cloroplastos/metabolismo , Cobalto/metabolismo , Homeostasis , Deficiencias de Hierro , Proteínas de Transporte de Membrana/genética , Níquel/metabolismo , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Planta ; 249(3): 751-763, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30382344

RESUMEN

MAIN CONCLUSION: Fe uptake machinery of chloroplasts prefers to utilise Fe(III)-citrate over Fe-nicotianamine complexes. Iron uptake in chloroplasts is a process of prime importance. Although a few members of their iron transport machinery were identified, the substrate preference of the system is still unknown. Intact chloroplasts of oilseed rape (Brassica napus) were purified and subjected to iron uptake studies using natural and artificial iron complexes. Fe-nicotianamine (NA) complexes were characterised by 5 K, 5 T Mössbauer spectrometry. Expression of components of the chloroplast Fe uptake machinery was also studied. Fe(III)-NA contained a minor paramagnetic Fe(II) component (ca. 9%), a paramagnetic Fe(III) component exhibiting dimeric or oligomeric structure (ca. 20%), and a Fe(III) complex, likely being a monomeric structure, which undergoes slow electronic relaxation at 5 K (ca. 61%). Fe(II)-NA contained more than one similar chemical Fe(II) environment with no sign of Fe(III) components. Chloroplasts preferred Fe(III)-citrate compared to Fe(III)-NA and Fe(II)-NA, but also to Fe(III)-EDTA and Fe(III)-o,o'EDDHA, and the Km value was lower for Fe(III)-citrate than for the Fe-NA complexes. Only the uptake of Fe(III)-citrate was light-dependent. Regarding the components of the chloroplast Fe uptake system, only genes of the reduction-based Fe uptake system showed high expression. Chloroplasts more effectively utilize Fe(III)-citrate, but hardly Fe-NA complexes in Fe uptake.


Asunto(s)
Ácido Azetidinocarboxílico/análogos & derivados , Brassica napus/metabolismo , Cloroplastos/metabolismo , Compuestos Férricos/metabolismo , Hierro/metabolismo , Ácido Azetidinocarboxílico/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectroscopía de Mossbauer , Transcriptoma
7.
Phys Chem Chem Phys ; 20(30): 19768-19775, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29863207

RESUMEN

Producing self-assembled inorganic precipitate micro- and macro-structures with tailored properties may pave the way for new possibilities in, e.g., materials science and the pharmaceutical industry. One set of important parameters to maintain appropriate control over the yield falls in the frame of reaction kinetics, which affects the possible coupling between hydrodynamics and chemical reactions under flow conditions. In this study, we present a spectrophotometric method to experimentally determine the characteristic timescales of precipitation reactions. It is also shown that the nickel-oxalate model system - despite the fast chemical complexation equilibria taking place - can be kinetically described by either Classical Nucleation Theory or the classical homogeneous kinetics approach. The applicability of our results is illustrated via injection experiments intrinsically exhibiting coupling between chemistry and hydrodynamics. Therefore, we suggest that easy-to-handle power law functions may be applied to characterize the precipitation kinetics in flow systems.

8.
Planta ; 244(6): 1303-1313, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27541495

RESUMEN

MAIN CONCLUSION: Based on the effects of inorganic salts on chloroplast Fe uptake, the presence of a voltage-dependent step is proposed to play a role in Fe uptake through the outer envelope. Although iron (Fe) plays a crucial role in chloroplast physiology, only few pieces of information are available on the mechanisms of chloroplast Fe acquisition. Here, the effect of inorganic salts on the Fe uptake of intact chloroplasts was tested, assessing Fe and transition metal uptake using bathophenantroline-based spectrophotometric detection and plasma emission-coupled mass spectrometry, respectively. The microenvironment of Fe was studied by Mössbauer spectroscopy. Transition metal cations (Cd2+, Zn2+, and Mn2+) enhanced, whereas oxoanions (NO3-, SO42-, and BO33-) reduced the chloroplast Fe uptake. The effect was insensitive to diuron (DCMU), an inhibitor of chloroplast inner envelope-associated Fe uptake. The inorganic salts affected neither Fe forms in the uptake assay buffer nor those incorporated into the chloroplasts. The significantly lower Zn and Mn uptake compared to that of Fe indicates that different mechanisms/transporters are involved in their acquisition. The enhancing effect of transition metals on chloroplast Fe uptake is likely related to outer envelope-associated processes, since divalent metal cations are known to inhibit Fe2+ transport across the inner envelope. Thus, a voltage-dependent step is proposed to play a role in Fe uptake through the chloroplast outer envelope on the basis of the contrasting effects of transition metal cations and oxoaninons.


Asunto(s)
Transporte Biológico Activo/fisiología , Cloroplastos/metabolismo , Hierro/metabolismo , Beta vulgaris/metabolismo , Beta vulgaris/fisiología , Transporte Biológico Activo/efectos de los fármacos , Cadmio/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/fisiología , Diurona/farmacología , Herbicidas/farmacología , Manganeso/metabolismo , Espectroscopía de Mossbauer , Zinc/metabolismo
9.
Planta ; 244(1): 167-79, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27002973

RESUMEN

MAIN CONCLUSION: Fe deficiency responses in Strategy I causes a shift from the formation of partially removable hydrous ferric oxide on the root surface to the accumulation of Fe-citrate in the xylem. Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in cucumber which takes up Fe in a reduction based process (Strategy I) have been investigated. The identification of Fe microenvironments was carried out with (57)Fe Mössbauer spectroscopy and immunoblotting, whereas reductive washing and high-resolution microscopy was applied for the localization. In plants supplied with (57)Fe(III)-citrate, a transient presence of Fe-carboxylates in removable forms and the accumulation of partly removable, amorphous hydrous ferric oxide/hydroxyde have been identified in the apoplast and on the root surface, respectively. The latter may at least partly be the consequence of bacterial activity at the root surface. Ferritin accumulation did not occur at optimal Fe supply. Under Fe deficiency, highly soluble ferrous hexaaqua complex is transiently formed along with the accumulation of Fe-carboxylates, likely Fe-citrate. As (57)Fe-citrate is non-removable from the root samples of Fe deficient plants, the major site of accumulation is suggested to be the root xylem. Reductive washing results in another ferrous microenvironment remaining in the root apoplast, the Fe(II)-bipyridyl complex, which accounts for ~30 % of the total Fe content of the root samples treated for 10 min and rinsed with CaSO4 solution. When (57)Fe(III)-EDTA or (57)Fe(III)-EDDHA was applied as Fe-source higher soluble ferrous Fe accumulation was accompanied by a lower total Fe content, confirming that chelates are more efficient in maintaining soluble Fe in the medium while less stable natural complexes as Fe-citrate may perform better in Fe accumulation.


Asunto(s)
Cucumis sativus/metabolismo , Hierro/metabolismo , Raíces de Plantas/metabolismo , Xilema/metabolismo , Cucumis sativus/ultraestructura , Compuestos Férricos/metabolismo , Immunoblotting , Compuestos de Hierro/metabolismo , Microscopía Electrónica , Oxidación-Reducción , Raíces de Plantas/ultraestructura , Espectroscopía de Mossbauer
10.
Pathol Oncol Res ; 22(1): 139-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26433879

RESUMEN

Despite significant changes in pediatric oncological therapy, mortality is still high, mainly due to infections. Complement system as an ancient immune defense against microorganisms plays a significant role in surmounting infections, therefore, deficiency of its components may have particular importance in malignancies. The present paper assesses the effect of promoter (X/Y) and exon 1 (A/0) polymorphisms of the MBL2 gene altering mannose binding lectin (MBL) serum level in pediatric oncological patients with febrile neutropenia. Furthermore, frequency distribution of MBL2 alleles in children with malignancies and age-matched controls was analysed. Fifty-four oncohematological patients and 53 children who had undergone pediatric surgery were enrolled into this retrospective study. No significant differences were found in the frequency of MBL2 alleles between the hemato-oncologic and control group. The average duration of fever episodes was significantly shorter (p = 0.035) in patients carrying genotypes (AY/AY and AY/AX) that encode normal MBL level, compared to individuals with genotypes associated with lower functional MBL level (AX/AX, AY/0, AX/0, or 0/0) (days, median (IQ range) 3.7(0-5.4) vs. 5.0(3.8-6.6), respectively). In conclusion, our data suggest that MBL2 genotypes may influence the course of febrile neutropenia in pediatric patients with malignancies, and may contribute to clarification of the importance of MBL in infections.


Asunto(s)
Biomarcadores de Tumor/genética , Neutropenia Febril/genética , Lectina de Unión a Manosa/genética , Neoplasias/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Biomarcadores de Tumor/sangre , Niño , Preescolar , Neutropenia Febril/sangre , Neutropenia Febril/patología , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Lectina de Unión a Manosa/sangre , Estadificación de Neoplasias , Neoplasias/sangre , Neoplasias/cirugía , Pronóstico , Estudios Retrospectivos
11.
New Phytol ; 202(3): 920-928, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24506824

RESUMEN

Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.


Asunto(s)
Beta vulgaris/enzimología , Cloroplastos/enzimología , FMN Reductasa/metabolismo , Beta vulgaris/efectos de los fármacos , Beta vulgaris/fisiología , Cloroplastos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Hierro/farmacología , Deficiencias de Hierro , Péptidos/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Vesículas Transportadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA