Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Open Biol ; 14(5): 240018, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745463

RESUMEN

The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.


Asunto(s)
Precursor de Proteína beta-Amiloide , Contactinas , Neuronas , Animales , Humanos , Ratones , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Movimiento Celular , Contactinas/metabolismo , Contactinas/genética , Ratones Noqueados , Corteza Motora/metabolismo , Neuronas/metabolismo , Unión Proteica
2.
Nat Commun ; 15(1): 4663, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821932

RESUMEN

Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid ß precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.


Asunto(s)
Proteína del Gen 3 de Activación de Linfocitos , alfa-Sinucleína , Animales , Femenino , Humanos , Masculino , Ratones , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Unión Proteica
3.
Adv Sci (Weinh) ; 11(18): e2307734, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430535

RESUMEN

The hepatic content of amyloid beta (Aß) decreases drastically in human and rodent cirrhosis highlighting the importance of understanding the consequences of Aß deficiency in the liver. This is especially relevant in view of recent advances in anti-Aß therapies for Alzheimer's disease (AD). Here, it is shown that partial hepatic loss of Aß in transgenic AD mice immunized with Aß antibody 3D6 and its absence in amyloid precursor protein (APP) knockout mice (APP-KO), as well as in human liver spheroids with APP knockdown upregulates classical hallmarks of fibrosis, smooth muscle alpha-actin, and collagen type I. Aß absence in APP-KO and deficiency in immunized mice lead to strong activation of transforming growth factor-ß (TGFß), alpha secretases, NOTCH pathway, inflammation, decreased permeability of liver sinusoids, and epithelial-mesenchymal transition. Inversely, increased systemic and intrahepatic levels of Aß42 in transgenic AD mice and neprilysin inhibitor LBQ657-treated wild-type mice protect the liver against carbon tetrachloride (CCl4)-induced injury. Transcriptomic analysis of CCl4-treated transgenic AD mouse livers uncovers the regulatory effects of Aß42 on mitochondrial function, lipid metabolism, and its onco-suppressive effects accompanied by reduced synthesis of extracellular matrix proteins. Combined, these data reveal Aß as an indispensable regulator of cell-cell interactions in healthy liver and a powerful protector against liver fibrosis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Hígado , Ratones Transgénicos , Animales , Ratones , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Hígado/metabolismo , Hígado/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Humanos , Ratones Noqueados , Ratones Endogámicos C57BL
4.
Cell Biosci ; 13(1): 141, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37533067

RESUMEN

BACKGROUND: The amyloid precursor protein (APP), a key player in Alzheimer's disease (AD), is part of a larger gene family, including the APP like proteins APLP1 and APLP2. They share similar structures, form homo- and heterotypic dimers and exhibit overlapping functions. RESULTS: We investigated complex formation of the APP family members via two inducible dimerization systems, the FKBP-rapamycin based dimerization as well as cysteine induced dimerization, combined with co-immunoprecipitations and Blue Native (BN) gel analyses. Within the APP family, APLP1 shows the highest degree of dimerization and high molecular weight (HMW) complex formation. Interestingly, only about 20% of APP is dimerized in cultured cells whereas up to 50% of APP is dimerized in mouse brains, independent of age and splice forms. Furthermore, we could show that dimerized APP originates mostly from neurons and is enriched in synaptosomes. Finally, BN gel analysis of human cortex samples shows a significant decrease of APP dimers in AD patients compared to controls. CONCLUSIONS: Together, we suggest that loss of full-length APP dimers might correlate with loss of synapses in the process of AD.

5.
Mol Biol Cell ; 34(11): ar110, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37585286

RESUMEN

Alcadein α (Alcα) and amyloid-ß protein precursor (APP) are cargo receptors that associate vesicles with kinesin-1. These vesicles, which contain either Alcα or APP, transport various proteins/cargo molecules into axon nerve terminals. Here, we analyzed immune-isolated Alcα- and APP-containing vesicles of adult mouse brains with LC-MS/MS and identified proteins present in vesicles that contained either Alcα or APP. Among these proteins, Frizzled-5 (Fzd5), a Wnt receptor, was detected mainly in Alcα vesicles. Although colocalization ratios of Fzd5 with Alcα are low in the neurites of differentiating neurons by a low expression of Fzd5 in embryonic brains, the suppression of Alcα expression decreased the localization of Fzd5 in neurites of primary cultured neurons. Furthermore, Fzd5-EGFP expressed in primary cultured neurons was preferentially transported in axons with the transport velocities of Alcα vesicles. In synaptosomal fractions of adult-mice brains that express higher levels of Fzd5, the amount of Fzd5 and the phosphorylation level of calcium/calmodulin-dependent protein kinase-II were reduced in the Alcα-deficient mice. These results suggest that reduced transport of Fzd5 by Alcα-containing vesicles associated with kinesin-1 in axon terminals may impair the response to Wnt ligands in the noncanonical Ca2+-dependent signal transduction pathway at nerve terminals of mature neurons.


Asunto(s)
Transporte Axonal , Cinesinas , Animales , Ratones , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiología , Cromatografía Liquida , Cinesinas/metabolismo , Espectrometría de Masas en Tándem
6.
Front Cell Neurosci ; 17: 1106176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36779015

RESUMEN

The Tau protein can be phosphorylated by numerous kinases. In Alzheimer's disease (AD) hyperphosphorylated Tau species accumulate as neurofibrillary tangles that constitute a major hallmark of AD. AD is further characterized by extracellular Aß plaques, derived from the ß-amyloid precursor protein APP. Whereas Aß is produced by amyloidogenic APP processing, APP processing along the competing non-amyloidogenic pathway results in the secretion of neurotrophic and synaptotrophic APPsα. Recently, we demonstrated that APPsα has therapeutic effects in transgenic AD model mice and rescues Aß-dependent impairments. Here, we examined the potential of APPsα to regulate two major Tau kinases, GSK3ß and CDK5 in THY-Tau22 mice, a widely used mouse model of tauopathy. Immunohistochemistry revealed a dramatic increase in pathologically phosphorylated (AT8 and AT180) or misfolded Tau species (MC1) in the hippocampus of THY-Tau22 mice between 3 and 12 months of age. Using a highly sensitive radioactive kinase assay with recombinant human Tau as a substrate and immunoblotting, we demonstrate an increase in GSK3ß and CDK5 activity in the hippocampus of THY-Tau22 mice. Interestingly, AAV-mediated intracranial expression of APPsα in THY-Tau22 mice efficiently restored normal GSK3ß and CDK5 activity. Western blot analysis revealed upregulation of the CDK5 regulatory proteins p35 and p25, indicating CDK5 hyperactivation in THY-Tau22 mice. Strikingly, AAV-APPsα rescued p25 upregulation to wild-type levels even at stages of advanced Tau pathology. Sarkosyl fractionation used to study the abundance of soluble and insoluble phospho-Tau species revealed increased soluble AT8-Tau and decreased insoluble AT100-Tau species upon AAV-APPsα injection. Moreover, AAV-APPsα reduced misfolded (MC1) Tau species, particularly in somatodendritic compartments of CA1 pyramidal neurons. Finally, we show that AAV-APPsα upregulated PSD95 expression and rescued deficits in spine density of THY-Tau22 mice. Together our findings suggest that APPsα holds therapeutic potential to mitigate Tau-induced pathology.

7.
Front Mol Neurosci ; 15: 1028836, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36385765

RESUMEN

The amyloid precursor protein APP plays a crucial role in Alzheimer pathogenesis. Its physiological functions, however, are only beginning to be unraveled. APP belongs to a small gene family, including besides APP the closely related amyloid precursor-like proteins APLP1 and APLP2, that all constitute synaptic adhesion proteins. While APP and APLP2 are ubiquitously expressed, APLP1 is specific for the nervous system. Previous genetic studies, including combined knockouts of several family members, pointed towards a unique role for APLP1, as only APP/APLP1 double knockouts were viable. We now examined brain and neuronal morphology in APLP1 single knockout (KO) animals, that have to date not been studied in detail. Here, we report that APLP1-KO mice show normal spine density in hippocampal CA1 pyramidal cells and subtle alterations in dendritic complexity. Extracellular field recordings revealed normal basal synaptic transmission and no alterations in synaptic plasticity (LTP). Further, behavioral studies revealed in APLP1-KO mice a small deficit in motor function and reduced diurnal locomotor activity, while learning and memory were not affected by the loss of APLP1. In summary, our study indicates that APP family members serve both distinct and overlapping functions that need to be considered for therapeutic treatments of Alzheimer's disease.

8.
J Neurosci ; 42(29): 5782-5802, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35667850

RESUMEN

Alzheimer's disease (AD) is histopathologically characterized by Aß plaques and the accumulation of hyperphosphorylated Tau species, the latter also constituting key hallmarks of primary tauopathies. Whereas Aß is produced by amyloidogenic APP processing, APP processing along the competing nonamyloidogenic pathway results in the secretion of neurotrophic and synaptotrophic APPsα. Recently, we demonstrated that APPsα has therapeutic effects in transgenic AD model mice and rescues Aß-dependent impairments. Here, we examined the potential of APPsα to mitigate Tau-induced synaptic deficits in P301S mice (both sexes), a widely used mouse model of tauopathy. Analysis of synaptic plasticity revealed an aberrantly increased LTP in P301S mice that could be normalized by acute application of nanomolar amounts of APPsα to hippocampal slices, indicating a homeostatic function of APPsα on a rapid time scale. Further, AAV-mediated in vivo expression of APPsα restored normal spine density of CA1 neurons even at stages of advanced Tau pathology not only in P301S mice, but also in independent THY-Tau22 mice. Strikingly, when searching for the mechanism underlying aberrantly increased LTP in P301S mice, we identified an early and progressive loss of major GABAergic interneuron subtypes in the hippocampus of P301S mice, which may lead to reduced GABAergic inhibition of principal cells. Interneuron loss was paralleled by deficits in nest building, an innate behavior highly sensitive to hippocampal impairments. Together, our findings indicate that APPsα has therapeutic potential for Tau-mediated synaptic dysfunction and suggest that loss of interneurons leads to disturbed neuronal circuits that compromise synaptic plasticity as well as behavior.SIGNIFICANCE STATEMENT Our findings indicate, for the first time, that APPsα has the potential to rescue Tau-induced spine loss and abnormal synaptic plasticity. Thus, APPsα might have therapeutic potential not only because of its synaptotrophic functions, but also its homeostatic capacity for neuronal network activity. Hence, APPsα is one of the few molecules which has proven therapeutic effects in mice, both for Aß- and Tau-dependent synaptic impairments and might therefore have therapeutic potential for patients suffering from AD or primary tauopathies. Furthermore, we found in P301S mice a pronounced reduction of inhibitory interneurons as the earliest pathologic event preceding the accumulation of hyperphosphorylated Tau species. This loss of interneurons most likely disturbs neuronal circuits that are important for synaptic plasticity and behavior.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Tauopatías/patología
9.
Life Sci Alliance ; 4(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34544751

RESUMEN

Elevated amyloid precursor protein (APP) expression in the choroid plexus suggests an important role for extracellular APP metabolites such as sAPPα in cerebrospinal fluid. Despite widespread App brain expression, we hypothesized that specifically targeting choroid plexus expression could alter animal physiology. Through various genetic and viral approaches in the adult mouse, we show that choroid plexus APP levels significantly impact proliferation in both subventricular zone and hippocampus dentate gyrus neurogenic niches. Given the role of Aß peptides in Alzheimer disease pathogenesis, we also tested whether favoring the production of Aß in choroid plexus could negatively affect niche functions. After AAV5-mediated long-term expression of human mutated APP specifically in the choroid plexus of adult wild-type mice, we observe reduced niche proliferation, reduced hippocampus APP expression, behavioral defects in reversal learning, and deficits in hippocampal long-term potentiation. Our findings highlight the unique role played by the choroid plexus in regulating brain function and suggest that targeting APP in choroid plexus may provide a means to improve hippocampus function and alleviate disease-related burdens.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Plexo Coroideo/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/fisiología , Animales , Conducta Animal , Encéfalo/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Biochem Biophys Res Commun ; 570: 137-142, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34280617

RESUMEN

γ-Secretase is a protease catalysing the proteolysis of type-I membrane proteins usually after precedent ectodomain shedding of the respective protein substrates. Since proteolysis of membrane proteins is involved in fundamental cellular signaling pathways, dysfunction of γ-secretase can have significant impact on cellular metabolism and differentiation. Here, we examined the role of γ-secretase in cellular lipid metabolism using neuronally differentiated human SH-SY5Y cells. The pharmacological inhibition of γ-secretase induced lipid droplet (LD) accumulation. The LD accumulation was significantly attenuated by preventing the accumulation of C-terminal fragment of the amyloid precursor protein (APP-CTF), which is a direct substrate of γ-secretase. Additionally, LD accumulation upon γ-secretase inhibition was not induced in APP-knock out (APP-KO) mouse embryonic fibroblasts (MEFs), suggesting significant involvement of APP-CTF accumulation in LD accumulation upon γ-secretase inhibition. On the other hand, γ-secretase inhibition-dependent cholesterol accumulation was not attenuated by inhibition of APP-CTF accumulation in the differentiated SH-SY5Y cells nor in APP-KO MEFs. These results suggest that γ-secretase inhibition can induce accumulation of LD and cholesterol differentially via APP-CTF accumulation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Gotas Lipídicas/metabolismo , Fragmentos de Péptidos/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Diferenciación Celular , Línea Celular Tumoral , Colesterol/metabolismo , Ratones
11.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34172567

RESUMEN

Alterations in Ca2+ homeostasis have been reported in several in vitro and in vivo studies using mice expressing the Alzheimer's disease-associated transgenes, presenilin and the amyloid precursor protein (APP). While intense research focused on amyloid-ß-mediated functions on neuronal Ca2+ handling, the physiological role of APP and its close homolog APLP2 is still not fully clarified. We now elucidate a mechanism to show how APP and its homolog APLP2 control neuronal Ca2+ handling and identify especially the ectodomain APPsα as an essential regulator of Ca2+ homeostasis. Importantly, we demonstrate that the loss of APP and APLP2, but not APLP2 alone, impairs Ca2+ handling, the refill of the endoplasmic reticulum Ca2+ stores, and synaptic plasticity due to altered function and expression of the SERCA-ATPase and expression of store-operated Ca2+ channel-associated proteins Stim1 and Stim2. Long-term AAV-mediated expression of APPsα, but not acute application of the recombinant protein, restored physiological Ca2+ homeostasis and synaptic plasticity in APP/APLP2 cDKO cultures. Overall, our analysis reveals an essential role of the APP family and especially of the ectodomain APPsα in Ca2+ homeostasis, thereby highlighting its therapeutic potential.


Asunto(s)
Precursor de Proteína beta-Amiloide/deficiencia , Calcio/metabolismo , Hipocampo/patología , Homeostasis , Neuronas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Potenciales Postsinápticos Excitadores , Integrasas/metabolismo , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Regulación hacia Arriba
12.
EMBO J ; 40(12): e107471, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34008862

RESUMEN

The key role of APP for Alzheimer pathogenesis is well established. However, perinatal lethality of germline knockout mice lacking the entire APP family has so far precluded the analysis of its physiological functions for the developing and adult brain. Here, we generated conditional APP/APLP1/APLP2 triple KO (cTKO) mice lacking the APP family in excitatory forebrain neurons from embryonic day 11.5 onwards. NexCre cTKO mice showed altered brain morphology with agenesis of the corpus callosum and disrupted hippocampal lamination. Further, NexCre cTKOs revealed reduced basal synaptic transmission and drastically reduced long-term potentiation that was associated with reduced dendritic length and reduced spine density of pyramidal cells. With regard to behavior, lack of the APP family leads not only to severe impairments in a panel of tests for learning and memory, but also to an autism-like phenotype including repetitive rearing and climbing, impaired social communication, and deficits in social interaction. Together, our study identifies essential functions of the APP family during development, for normal hippocampal function and circuits important for learning and social behavior.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Trastorno Autístico/genética , Animales , Trastorno Autístico/fisiopatología , Conducta Animal , Región CA1 Hipocampal/fisiología , Femenino , Aprendizaje , Potenciación a Largo Plazo , Masculino , Ratones Noqueados , Neuronas/fisiología , Fenotipo , Prosencéfalo/citología , Conducta Social , Sinapsis/fisiología , Transmisión Sináptica
13.
J Neurosci ; 41(24): 5157-5172, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33926999

RESUMEN

The physiological role of the amyloid-precursor protein (APP) is insufficiently understood. Recent work has implicated APP in the regulation of synaptic plasticity. Substantial evidence exists for a role of APP and its secreted ectodomain APPsα in Hebbian plasticity. Here, we addressed the relevance of APP in homeostatic synaptic plasticity using organotypic tissue cultures prepared from APP-/- mice of both sexes. In the absence of APP, dentate granule cells failed to strengthen their excitatory synapses homeostatically. Homeostatic plasticity is rescued by amyloid-ß and not by APPsα, and it is neither observed in APP+/+ tissue treated with ß- or γ-secretase inhibitors nor in synaptopodin-deficient cultures lacking the Ca2+-dependent molecular machinery of the spine apparatus. Together, these results suggest a role of APP processing via the amyloidogenic pathway in homeostatic synaptic plasticity, representing a function of relevance for brain physiology as well as for brain states associated with increased amyloid-ß levels.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/fisiología , Plasticidad Neuronal/fisiología , Animales , Femenino , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Aging Cell ; 19(11): e13264, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33128835

RESUMEN

One of the major pathological hallmarks of Alzheimer´s disease (AD) is an accumulation of amyloid-ß (Aß) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between Aß-production and -degradation is necessary to prevent pathological Aß-accumulation. Here, we investigate the molecular mechanism how insulin-degrading enzyme (IDE), one of the major Aß-degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and Aß-degradation is linked in a regulatory cycle to achieve this balance. In absence of Aß-production caused by APP or Presenilin deficiency, IDE-mediated Aß-degradation was decreased, accompanied by a decreased IDE activity, protein level, and expression. Similar results were obtained in cells only expressing a truncated APP, lacking the APP intracellular domain (AICD) suggesting that AICD promotes IDE expression. In return, APP overexpression mediated an increased IDE expression, comparable results were obtained with cells overexpressing C50, a truncated APP representing AICD. Beside these genetic approaches, also AICD peptide incubation and pharmacological inhibition of the γ-secretase preventing AICD production regulated IDE expression and promoter activity. By utilizing CRISPR/Cas9 APP and Presenilin knockout SH-SY5Y cells results were confirmed in a second cell line in addition to mouse embryonic fibroblasts. In vivo, IDE expression was decreased in mouse brains devoid of APP or AICD, which was in line with a significant correlation of APP expression level and IDE expression in human postmortem AD brains. Our results show a tight link between Aß-production and Aß-degradation forming a regulatory cycle in which AICD promotes Aß-degradation via IDE and IDE itself limits its own production by degrading AICD.


Asunto(s)
Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Insulisina/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Transducción de Señal
15.
Cereb Cortex ; 30(7): 4044-4063, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32219307

RESUMEN

Amyloid-ß precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, yet its physiological functions remain incompletely understood. Previous studies had indicated important synaptic functions of APP and the closely related homologue APLP2 in excitatory forebrain neurons for spine density, synaptic plasticity, and behavior. Here, we show that APP is also widely expressed in several interneuron subtypes, both in hippocampus and cortex. To address the functional role of APP in inhibitory neurons, we generated mice with a conditional APP/APLP2 double knockout (cDKO) in GABAergic forebrain neurons using DlxCre mice. These DlxCre cDKO mice exhibit cognitive deficits in hippocampus-dependent spatial learning and memory tasks, as well as impairments in species-typic nesting and burrowing behaviors. Deficits at the behavioral level were associated with altered neuronal morphology and synaptic plasticity Long-Term Potentiation (LTP). Impaired basal synaptic transmission at the Schafer collateral/CA1 pathway, which was associated with altered compound excitatory/inhibitory synaptic currents and reduced action potential firing of CA1 pyramidal cells, points to a disrupted excitation/inhibition balance in DlxCre cDKOs. Together, these impairments may lead to hippocampal dysfunction. Collectively, our data reveal a crucial role of APP family proteins in inhibitory interneurons to maintain functional network activity.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Cognición/fisiología , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/genética , Células Piramidales/metabolismo , Potenciales de Acción , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Potenciales Postsinápticos Excitadores , Hipocampo/fisiopatología , Potenciales Postsinápticos Inhibidores , Potenciación a Largo Plazo/genética , Ratones , Ratones Noqueados , Comportamiento de Nidificación/fisiología , Prosencéfalo , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología
16.
Mol Neurodegener ; 15(1): 3, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915042

RESUMEN

The amyloid-ß (Aß) peptide, the primary constituent of amyloid plaques found in Alzheimer's disease (AD) brains, is derived from sequential proteolytic processing of the Amyloid Precursor Protein (APP). However, the contribution of different cell types to Aß deposition has not yet been examined in an in vivo, non-overexpression system. Here, we show that endogenous APP is highly expressed in a heterogeneous subset of GABAergic interneurons throughout various laminae of the hippocampus, suggesting that these cells may have a profound contribution to AD plaque pathology. We then characterized the laminar distribution of amyloid burden in the hippocampus of an APP knock-in mouse model of AD. To examine the contribution of GABAergic interneurons to plaque pathology, we blocked Aß production specifically in these cells using a cell type-specific knock-out of BACE1. We found that during early stages of plaque deposition, interneurons contribute to approximately 30% of the total plaque load in the hippocampus. The greatest contribution to plaque load (75%) occurs in the stratum pyramidale of CA1, where plaques in human AD cases are most prevalent and where pyramidal cell bodies and synaptic boutons from perisomatic-targeting interneurons are located. These findings reveal a crucial role of GABAergic interneurons in the pathology of AD. Our study also highlights the necessity of using APP knock-in models to correctly evaluate the cellular contribution to amyloid burden since APP overexpressing transgenic models drive expression in cell types according to the promoter and integration site and not according to physiologically relevant expression mechanisms.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Neuronas GABAérgicas/patología , Hipocampo/patología , Interneuronas/patología , Placa Amiloide/patología , Animales , Femenino , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones
17.
Glia ; 67(5): 985-998, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30667091

RESUMEN

The investigation of amyloid precursor protein (APP) has been mainly confined to its neuronal functions, whereas very little is known about its physiological role in astrocytes. Astrocytes exhibit a particular morphology with slender extensions protruding from somata and primary branches. Along these fine extensions, spontaneous calcium transients occur in spatially restricted microdomains. Within these microdomains mitochondria are responsible for local energy supply and Ca2+ buffering. Using two-photon in vivo Ca2+ imaging, we report a significant decrease in the density of active microdomains, frequency of spontaneous Ca2+ transients and slower Ca2+ kinetics in mice lacking APP. Mechanistically, these changes could be potentially linked to mitochondrial malfunction as our in vivo and in vitro data revealed severe, APP-dependent structural mitochondrial fragmentation in astrocytes. Functionally, such mitochondria exhibited prolonged kinetics and morphology dependent signal size of ATP-induced Ca2+ transients. Our results highlight a prominent role of APP in the modulation of Ca2+ activity in astrocytic microdomains whose precise functioning is crucial for the reinforcement and modulation of synaptic function. This study provides novel insights in APP physiological functions which are important for the understanding of the effects of drugs validated in Alzheimer's disease treatment that affect the function of APP.


Asunto(s)
Precursor de Proteína beta-Amiloide/deficiencia , Astrocitos/ultraestructura , Encéfalo/citología , Calcio/metabolismo , Microdominios de Membrana/metabolismo , Mitocondrias/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/ultraestructura , Transducción Genética , Transfección
18.
Mol Cell Proteomics ; 17(8): 1487-1501, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29716987

RESUMEN

The cell surface proteome is dynamic and has fundamental roles in cell signaling. Many surface membrane proteins are proteolytically released into a cell's secretome, where they can have additional functions in cell-cell-communication. Yet, it remains challenging to determine the surface proteome and to compare it to the cell secretome, under serum-containing cell culture conditions. Here, we set up and evaluated the 'surface-spanning protein enrichment with click sugars' (SUSPECS) method for cell surface membrane glycoprotein biotinylation, enrichment and label-free quantitative mass spectrometry. SUSPECS is based on click chemistry-mediated labeling of glycoproteins, is compatible with labeling of living cells and can be combined with secretome analyses in the same experiment. Immunofluorescence-based confocal microscopy demonstrated that SUSPECS selectively labeled cell surface proteins. Nearly 700 transmembrane glycoproteins were consistently identified at the surface of primary neurons. To demonstrate the utility of SUSPECS, we applied it to the protease BACE1, which is a key drug target in Alzheimer's disease. Pharmacological BACE1-inhibition selectively remodeled the neuronal surface glycoproteome, resulting in up to 7-fold increased abundance of the BACE1 substrates APP, APLP1, SEZ6, SEZ6L, CNTN2, and CHL1, whereas other substrates were not or only mildly affected. Interestingly, protein changes at the cell surface only partly correlated with changes in the secretome. Several altered proteins were validated by immunoblots in neurons and mouse brains. Apparent nonsubstrates, such as TSPAN6, were also increased, indicating that BACE1-inhibition may lead to unexpected secondary effects. In summary, SUSPECS is broadly useful for determination of the surface glycoproteome and its correlation with the secretome.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Membrana Celular/metabolismo , Química Clic/métodos , Glicoproteínas/metabolismo , Neuronas/metabolismo , Proteoma/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Biotinilación , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Especificidad por Sustrato
19.
EMBO J ; 37(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29661886

RESUMEN

Increasing evidence suggests that synaptic functions of the amyloid precursor protein (APP), which is key to Alzheimer pathogenesis, may be carried out by its secreted ectodomain (APPs). The specific roles of APPsα and APPsß fragments, generated by non-amyloidogenic or amyloidogenic APP processing, respectively, remain however unclear. Here, we expressed APPsα or APPsß in the adult brain of conditional double knockout mice (cDKO) lacking APP and the related APLP2. APPsα efficiently rescued deficits in spine density, synaptic plasticity (LTP and PPF), and spatial reference memory of cDKO mice. In contrast, APPsß failed to show any detectable effects on synaptic plasticity and spine density. The C-terminal 16 amino acids of APPsα (lacking in APPsß) proved sufficient to facilitate LTP in a mechanism that depends on functional nicotinic α7-nAChRs. Further, APPsα showed high-affinity, allosteric potentiation of heterologously expressed α7-nAChRs in oocytes. Collectively, we identified α7-nAChRs as a crucial physiological receptor specific for APPsα and show distinct in vivo roles for APPsα versus APPsß. This implies that reduced levels of APPsα that might occur during Alzheimer pathogenesis cannot be compensated by APPsß.


Asunto(s)
Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Cognición/fisiología , Plasticidad Neuronal/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Columna Vertebral/metabolismo , Columna Vertebral/patología , Transmisión Sináptica/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...