Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mammary Gland Biol Neoplasia ; 28(1): 26, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066300

RESUMEN

Metastasis is the leading cause of cancer-related deaths of breast cancer patients. Some cancer cells in a tumour go through successive steps, referred to as the metastatic cascade, and give rise to metastases at a distant site. We know that the plasticity and heterogeneity of cancer cells play critical roles in metastasis but the precise underlying molecular mechanisms remain elusive. Here we aimed to identify molecular mechanisms of metastasis during colonization, one of the most important yet poorly understood steps of the cascade. We performed single-cell RNA-Seq (scRNA-Seq) on tumours and matched lung macrometastases of patient-derived xenografts of breast cancer. After correcting for confounding factors such as the cell cycle and the percentage of detected genes (PDG), we identified cells in three states in both tumours and metastases. Gene-set enrichment analysis revealed biological processes specific to proliferation and invasion in two states. Our findings suggest that these states are a balance between epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial transitions (MET) traits that results in so-called partial EMT phenotypes. Analysis of the top differentially expressed genes (DEGs) between these cell states revealed a common set of partial EMT transcription factors (TFs) controlling gene expression, including ZNF750, OVOL2, TP63, TFAP2C and HEY2. Our data suggest that the TFs related to EMT delineate different cell states in tumours and metastases. The results highlight the marked interpatient heterogeneity of breast cancer but identify common features of single cells from five models of metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Factores de Transcripción , Análisis de la Célula Individual , Proteínas Supresoras de Tumor
2.
Oncogene ; 41(39): 4459-4473, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36008466

RESUMEN

Plasticity delineates cancer subtypes with more or less favourable outcomes. In breast cancer, the subtype triple-negative lacks expression of major differentiation markers, e.g., estrogen receptor α (ERα), and its high cellular plasticity results in greater aggressiveness and poorer prognosis than other subtypes. Whether plasticity itself represents a potential vulnerability of cancer cells is not clear. However, we show here that cancer cell plasticity can be exploited to differentiate triple-negative breast cancer (TNBC). Using a high-throughput imaging-based reporter drug screen with 9 501 compounds, we have identified three polo-like kinase 1 (PLK1) inhibitors as major inducers of ERα protein expression and downstream activity in TNBC cells. PLK1 inhibition upregulates a cell differentiation program characterized by increased DNA damage, mitotic arrest, and ultimately cell death. Furthermore, cells surviving PLK1 inhibition have decreased tumorigenic potential, and targeting PLK1 in already established tumours reduces tumour growth both in cell line- and patient-derived xenograft models. In addition, the upregulation of genes upon PLK1 inhibition correlates with their expression in normal breast tissue and with better overall survival in breast cancer patients. Our results indicate that differentiation therapy based on PLK1 inhibition is a potential alternative strategy to treat TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Mama/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Receptor alfa de Estrógeno , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
3.
Nature ; 567(7749): 540-544, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30867597

RESUMEN

Diversity within or between tumours and metastases (known as intra-patient tumour heterogeneity) that develops during disease progression is a serious hurdle for therapy1-3. Metastasis is the fatal hallmark of cancer and the mechanisms of colonization, the most complex step in the metastatic cascade4, remain poorly defined. A clearer understanding of the cellular and molecular processes that underlie both intra-patient tumour heterogeneity and metastasis is crucial for the success of personalized cancer therapy. Here, using transcriptional profiling of tumours and matched metastases in patient-derived xenograft models in mice, we show cancer-site-specific phenotypes and increased glucocorticoid receptor activity in distant metastases. The glucocorticoid receptor mediates the effects of stress hormones, and of synthetic derivatives of these hormones that are used widely in the clinic as anti-inflammatory and immunosuppressive agents. We show that the increase in stress hormones during breast cancer progression results in the activation of the glucocorticoid receptor at distant metastatic sites, increased colonization and reduced survival. Our transcriptomics, proteomics and phospho-proteomics studies implicate the glucocorticoid receptor in the activation of multiple processes in metastasis and in the increased expression of kinase ROR1, both of which correlate with reduced survival. The ablation of ROR1 reduced metastatic outgrowth and prolonged survival in preclinical models. Our results indicate that the activation of the glucocorticoid receptor increases heterogeneity and metastasis, which suggests that caution is needed when using glucocorticoids to treat patients with breast cancer who have developed cancer-related complications.


Asunto(s)
Neoplasias de la Mama/patología , Glucocorticoides/efectos adversos , Glucocorticoides/metabolismo , Metástasis de la Neoplasia/patología , Animales , Neoplasias de la Mama/enzimología , Línea Celular Tumoral , Dexametasona/efectos adversos , Dexametasona/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/efectos de los fármacos , Tasa de Supervivencia
4.
Mod Pathol ; 20(6): 632-7, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17431414

RESUMEN

Lineage determination in lymphomas is based on the assessment of lineage-specific markers, such as the B-cell-specific activator protein of the paired box family (BSAP, PAX-5) for the B-cell lineage. BSAP is thought to be expressed exclusively in B cells from the pro-B- to the mature B-cell stage and then silenced in plasma cells. BSAP has oncogenic potential and experimental evidence shows that the T-cell lineage is prone to this effect. Herein, we report on a BSAP-positive peripheral T-cell lymphoma with monoclonal T-cell receptor gamma-gene rearrangement. To assess the relative frequency of BSAP expression in mature T-cell lymphomas, we constructed and examined a tissue microarray consisting of 43 angioimmunoblastic T-cell lymphomas and peripheral T-cell lymphomas and detected no additional BSAP-positive cases. To conclude, BSAP can probably contribute to T-cell lymphomagenesis not only in vitro, but also in vivo. It is rarely expressed in peripheral T-cell lymphoma, thus its detection on lymphoid malignancies cannot be considered definitively lineage specific.


Asunto(s)
Linfoma de Células T/metabolismo , Factor de Transcripción PAX5/biosíntesis , Anciano , Biomarcadores de Tumor/biosíntesis , Linaje de la Célula , Femenino , Reordenamiento Génico de la Cadena gamma de los Receptores de Antígenos de los Linfocitos T , Humanos , Linfoma de Células T/patología , Linfoma de Células T Periférico/metabolismo , Masculino , Persona de Mediana Edad , Análisis de Matrices Tisulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...