Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(9): 15215-15225, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36048506

RESUMEN

Metallic group VIB transition metal dichalcogenides (1T-TMDs) have attracted great interest because of their outstanding performance in electrocatalysis, supercapacitors, batteries, and so on, whereas the strict fabrication conditions and thermodynamical metastability of 1T-TMDs greatly restrict their extensive applications. Therefore, it is significant to obtain stable and high-concentration 1T-TMDs in a simple and large-scale strategy. Herein, we report a facile and large-scale synthesis of high-concentration 1T-TMDs via an ionic liquid (IL) assisted hydrothermal strategy, including 1T-MoS2 (the obtained MoS2 sample was denoted as MoS2-IL), 1T-WS2, 1T-MoSe2, and 1T-WSe2. More importantly, we found that IL can adsorb on the surface of 1T-MoS2, where the steric hindrance, π-π stacking, and hydrogen bonds of ionic liquid collectively induce the formation of the 1T-MoS2. In addition, DFT calculation reveals that electrons are transferred from [BMIM]SCN (1-butyl-3-methylimidazolium thiocyanate) to 1T-MoS2 layers by hydrogen bonds, which enhances the stability of 1T-MoS2, so the MoS2-IL performs with high stability for 180 days at room temperature without obvious change. Furthermore, the MoS2-IL exhibits excellent HER performance with an overpotential of 196 mV at 10 mA cm-2 in acid conditions.

2.
Toxicology ; 473: 153193, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35533795

RESUMEN

Busulfan, a chemotherapeutic agent for cancer, has detrimental effects on germ cells and fertility, yet the specific mechanisms remain largely uncertain. The blood-testis barrier (BTB) maintains a suitable microenvironment for germ cells self-renewal and spermatogenesis by blocking the interference and damage of deleterious substances. Therefore, we hypothesized that BTB abnormalities might be involved in busulfan-induced oligospermia. To verify the hypothesis, thirty male Balb/c mice were randomly administered with busulfan (at a total dose of 40 mg/kg body weight) by intraperitoneal injection for 4 weeks to establish the model of oligospermia. The results displayed that busulfan caused testicular histopathological lesions and spermatogenesis disorder. Meanwhile, busulfan disrupted BTB integrity and lessened the expressions of BTB junction proteins, including Occludin, Claudin-11 and Connexin-43. Furthermore, busulfan activated the endoplasmic reticulum (ER) stress and PERK-eIF2α signaling pathway, reflected by the increased protein expressions of GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. Finally, to evaluate whether the ER stress is involved in busulfan-induced BTB destruction, the ER stress inhibitor 4-Phenylbutyric acid (4-PBA, 1 mM) was used to intervene in busulfan-exposed TM4 cells. The results displayed that inhibition of ER stress alleviated the reduction of BTB junction protein expressions induced by busulfan in TM4 cells. These data collectively indicated that busulfan-induced BTB impairment was mediated by triggering ER stress and activation of the PERK-eIF2α signaling pathway, thereby damaging the spermatogenesis, providing a new therapeutic target for male infertility induced by busulfan.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Oligospermia , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis , Barrera Hematotesticular/metabolismo , Busulfano/toxicidad , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Masculino , Ratones , Transducción de Señal , eIF-2 Quinasa/metabolismo
3.
Nanoscale ; 14(21): 7817-7827, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35262130

RESUMEN

High-entropy perovskite oxides (HEPOs) are attracting significant attention due to their unique structures, unprecedented properties and great application potential in many fields, while available synthetic methods have many shortcomings; so it is still a challenge to develop a simple, low-cost and environment-friendly synthetic strategy for HEPOs. Herein, a novel synthetic strategy is reported for HEPOs using an ionic liquid (IL)-hydroxide-mediated technique at a low temperature and normal atmospheric pressure. The synthesized HEPOs, including Ba(FeNbTiZrTa)O3, Ba(MnNbTiZrTa)O3, Ba(FeSnTiZrTa)O3 and Ba(FeVTiZrTa)O3, exhibit a cubic structure and a dispersed nanoparticle morphology (particle size of 20-60 nm). The formation process of HEPOs in an IL-KOH system can be described as follows: first, B-site metal source compounds are dissolved in IL-KOH medium to form hydroxyl complexes; second, the complexes further dehydrate, condensate and react with Ba2+ ions to form the crystal nuclei of HEPOs under the synergistic effect of reaction temperature and basicity; third, the growth of HEPO nuclei is completed by the Ostwald ripening process. In these processes, KOH not only plays a role as a solvent, but also provides sufficient OH- concentration for the formation and condensation of B-site metal hydroxyl complexes, while the IL also makes significant contributions: first, a lower reaction temperature and lower dosage of KOH are achieved by the use of the IL; second, the IL with good dissolving ability and low surface tensions can promote the nucleation rate of HEPOs and improve the Ostwald ripening process; third, the compact adsorption of the IL on the surface of products ensures a small particle size and high dispersion of HEPO nanoparticles to a certain extent. In brief, the technique provides an innovative, low-cost, simple and nontoxic strategy for the synthesis of HEPOs, which can be extended to other high-entropy materials.

4.
Environ Toxicol Pharmacol ; 90: 103794, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34971797

RESUMEN

Many studies have shown that aflatoxin B1 (AFB1) can cause cytotoxicity in numerous cells and organs induced by oxidative stress. However, the toxic effects and related mechanism of AFB1 on the microglia cells in the spinal cords have not been studied yet. Our results showed that AFB1 significantly reduced the number of microglia cells, increased the oxidants (malonaldehyde and hydrogen peroxide) but decreased the anti-oxidants (superoxide dismutase and total antioxidant capacity) in a dose dependent manner in mice spinal cords. In addition, AFB1 significantly increased the oxidative stress, promoted apoptosis and cell cycle arrest in G2-M phase, and activated NF-κB phosphorylation in BV2 microglia cells. However, the addition of active oxygen scavenger N-acetylcysteine can significantly reduce the ROS production, improve cell cycle arrest, reduce apoptosis, and the expression of phosphorylated NF-κB in BV2 microglia cells. These results indicate that AFB1 induces microglia cells apoptosis through oxidative stress by activating NF-κB signaling pathway.


Asunto(s)
Aflatoxina B1/toxicidad , Apoptosis/efectos de los fármacos , Microglía/efectos de los fármacos , Acetilcisteína/administración & dosificación , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células Cultivadas , Masculino , Ratones , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Médula Espinal/efectos de los fármacos
5.
Micromachines (Basel) ; 12(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34577684

RESUMEN

Thermal bubble-driven micropumps have the advantages of high reliability, simple structure and simple fabrication process. However, the high temperature of the thermal bubble may damage some biological or chemical properties of the solution. In order to reduce the influence of the high temperature of the thermal bubbles on the pumped liquid, this paper proposes a kind of heat insulation micropump driven by thermal bubbles with induction heating. The thermal bubble and its chamber are designed on one side of the main pumping channel. The high temperature of the thermal bubble is insulated by the liquid in the heat insulation channel, which reduces the influence of the high temperature of the thermal bubble on the pumped liquid. Protypes of the new micropump with heat source insulation were fabricated and experiments were performed on them. The experiments showed that the temperature of the pumped liquid was less than 35 °C in the main pumping channel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...