Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 140
1.
Front Plant Sci ; 15: 1352834, 2024.
Article En | MEDLINE | ID: mdl-38590743

Alpine wetland degradation threatens riparian biodiversity and ecological balance. Our study, conducted in July 2020 along the northern and eastern shores of Qinghai Lake, seeks to unravel the impacts of such degradation on plant species dominance and ecological niches, using advanced network analysis methods to explore the dynamics and survival strategies of plant species. We applied a space-to-time method to delineate three wetland degradation stage: a healthy swamp wetland, a slightly degraded wet meadow, and a degraded dry meadow. Six representative sampling points were chosen. At each point, three sample lines were randomly established, radiating outward from the center of the lake wetland, with each stage of degradation meticulously examined through three replicates to assess the plant communities in terms of species composition, plant height, coverage, and abundance. The results indicated: Species such as Kobresia tibetica and Leymus secalinus exhibit remarkable abundance across various stages of wetland degradation, indicating a robust tolerance to these conditions. This observation, coupled with the complexity of plant community structures in degrading wetlands, suggests that such intricacy cannot be solely attributed to the dominance of particular species. Instead, it is the result of a diverse array of species adapting to fluctuating water levels, which promotes increased species richness. Despite the prominence of species that exhibit rapid growth and reproduction, the ecological significance of less abundant species in contributing to the community's complexity is also notable. Changes in habitat conditions due to wetland degradation facilitate both competitive and cooperative interactions among species, highlighting the dynamic nature of these ecosystems. Our analysis shows no significant linear relationship between the ecological niche overlap values and niche widths of plant species. However, the strategies employed by dominant species for competition and resource acquisition, as observed in the ecological niche overlap networks, underscore the adaptive capacity of plant communities. These insights underscore the need for tailored restoration strategies to conserve the biodiversity of alpine lake riparian ecosystems. This research not only sheds light on the resilience and adaptability of ecosystems in the Qinghai-Tibetan Plateau but also offers valuable lessons for the conservation of similar habitats worldwide. Our findings underscore the need for tailored restoration strategies to conserve the biodiversity of alpine lake riparian ecosystems. This research not only sheds light on the resilience and adaptability of ecosystems in the Qinghai-Tibetan Plateau but also offers valuable lessons for the conservation of similar habitats worldwide.

2.
Heliyon ; 10(8): e28257, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38655314

In this work, magnetic molecularly imprinted polymers (MIPs) for specific recognition of Hydroxytyrosol (HT) were designed by vinyl-modified magnetic particles (Fe3O4@SiO2@VTEOs) as carrier, ternary deep eutectic solvent (DES) as functional monomer, while ethylene glycol dimethacrylate (EGDMA) as crosslinker. The optimum amount of DES was obtained by adsorption experiments (molar ratio, caffeic acid: choline chloride: formic acid = 1:6:3) which were 140 µL in total. Under the optimized amount of DES, the maximum adsorption capacity of the MIPs particles was 42.43 mg g-1, which was superior to non-imprinted polymer (4.64 mg g-1) and the imprinting factor (IF) is 9.10. Syringin and Oleuropicrin were used as two reference molecules to test the selectivity of the DES-MIPs particles. The adsorption capacity of HT was 40.11 mg g-1. Three repeated experiments show that the polymer has high stability and repeatability (RSD = 5.50).

3.
Chem Biodivers ; 21(4): e202301898, 2024 Apr.
Article En | MEDLINE | ID: mdl-38369765

Polyoxometalates (POMs) are promising inorganic drug candidates for cancer chemotherapy. They are becoming attractive because of their easy accessibility and low cost. Herein, we report the synthesis and antitumor activity studies of four Lindqvist-type POMs with mixed-addenda atoms Na2[V4W2O16{(OCH2)3CR}] (R=-CH2OH, -CH3, -CH2CH3) and (Bu4N)2[V3W3{(OCH2)3CH2OOCCH2CH3}]. Compared with the current clinical applied antitumor drug 5-fluorouracil (5-FU) or Gemcitabine, analysis of MTT/CCK-8 assay, colony formation and wound healing assay revealed that the {V4W2} POMs had acceptable cytotoxicity in normal cells (293T) and significant inhibitory effects on cell proliferation and migration in three human tumor cell lines: human lung carcinoma cells (A549), human cervical carcinoma cells (HeLa), and human breast cancer cells (MCF-7). Interestingly, among the POMs analyzed, the therapeutic index (TI) of the {V4W2} POM with R= -CH2OH was relatively the most satisfactory. Thus, it was subsequently used for further studies. Flow cytometry analysis showed it prompted cellular apoptosis rate. qRT-PCR and Western blotting analysis indicated that multiple cell death pathways were activated including apoptosis, autophagy, necroptosis and pyroptosis during the POM-mediated antitumor process. In conclusion, our study shows that the polyoxotungstovanadate has great potential to be developed into a broad-spectrum antitumor chemotherapeutic drug.


Antineoplastic Agents , Carcinoma , Humans , Antineoplastic Agents/pharmacology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Carcinoma/drug therapy
4.
J Med Virol ; 96(3): e29496, 2024 Mar.
Article En | MEDLINE | ID: mdl-38402627

The detection of high-risk human papillomaviruses (HPVs) is crucial for early screening and preventing cervical cancer. However, the substantial workload in high-level hospitals or the limited resources in primary-level hospitals hinder widespread testing. To address this issue, we explored a sample-to-answer genotyping system and assessed its performance by comparing it with the traditional real-time polymerase chain reaction (PCR) method conducted manually. Samples randomly selected from those undergoing routine real-time PCR detection were re-analyzed using the fully automatic GenPlex® system. This system identifies 24 types of HPV through a combination of ordinary PCR and microarray-based reverse hybridization. Inconsistent results were confirmed by repeated testing with both methods, and the κ concordance test was employed to evaluate differences between the two methods. A total of 365 samples were randomly selected from 7259 women. According to real-time PCR results, 76 were high-risk HPV negative, and 289 were positive. The GenPlex® system achieved a κ value greater than 0.9 (ranging from 0.920 to 1.000, p < 0.0001) for 14 types of high-risk HPV, except HPV 51 (κ = 0.697, p < 0.0001). However, the inconsistent results in high-risk HPV 51 were revealed to be false positive in real-time PCR by other method. When counting by samples without discriminating the high-risk HPV type, the results of both methods were entirely consistent (κ = 1.000, p < 0.0001). Notably, the GenPlex® system identified more positive cases, with 73 having an HPV type not covered by real-time PCR, and 20 potentially due to low DNA concentration undetectable by the latter. Compared with the routinely used real-time PCR assay, the GenPlex® system demonstrated high consistency. Importantly, the system's advantages in automatic operation and a sealed lab-on-chip format respectively reduce manual work and prevent aerosol pollution. For widespread use of GenPlex® system, formal clinical validation following international criteria should be warranted.


Alphapapillomavirus , Human Papillomavirus Viruses , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Real-Time Polymerase Chain Reaction , Genotype , Papillomavirus Infections/diagnosis , Sensitivity and Specificity , DNA, Viral/genetics , Papillomaviridae/genetics , Oligonucleotide Array Sequence Analysis
5.
Article En | MEDLINE | ID: mdl-38321900

BACKGROUND: Long non-coding RNAs (LncRNAs) are generally reported to participate in the development of Osteoarthritis (OA) by acting as competing endogenous RNAs (ceRNAs). However, the molecular mechanism is largely unknown. This study aimed to investigate the possible mechanisms contributing to osteoarthritis (OA). METHODS: Four gene expression profiles from patients with OA were downloaded from a public database and integrated to screen important RNAs associated with OA. Differentially expressed (DE) lncRNAs, microRNAs (miRNAs), and mRNAs were filtered, and a ceRNA network was constructed. An in vitro OA model was established by treating chondrocytes with IL-1ß. The expression levels of MMP-13, COL2A1, aggrecan, and RUNX2 were detected by qRT-PCR and western blot. Cell proliferation ability was detected by CCK-8 assay. Flow cytometry was used for apoptosis assay. A dual luciferase reporter gene was used to confirm the relationship between DLEU1, miR-492, and TLR8. RESULTS: An OA-related ceRNA network, including 11 pathways, 3 miRNAs, 7 lncRNAs, and 16 mRNAs, was constructed. DLEU1 and TLR8 were upregulated, and miR-492 was downregulated in IL-1ß-induced chondrocytes. Overexpression of DLEU1 suppressed viability and promoted apoptosis and extracellular matrix (ECM) degradation in IL-1ß induced chondrocytes. Luciferase reporter assay validated the regulatory relations among DLEU1, miR-492, and TLR8. Further study revealed that the effects of DLEU1 on chondrocytes could be reversed by miR-492. CONCLUSION: DLEU1 may be responsible for the viability, apoptosis, and ECM degradation in OA via miR-492/TLR8 axis.

6.
Org Lett ; 26(6): 1218-1223, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38319139

A mild and efficient method for lignin ß-O-4 cleavage and functionalization was achieved via photocatalysis. This protocol exhibits a broad scope of lignin models and excellent compatibility of functionalization reagents, constructing a series of functionalized lignin-based aromatic compounds. Highly selective formation of alkyl radical species through a proton-coupled electron transfer and ß-scission process provides the opportunity to form new C-C and C-N bonds by reaction with electrophilic reagents.

9.
Int J Biol Macromol ; 254(Pt 2): 127845, 2024 Jan.
Article En | MEDLINE | ID: mdl-37935292

Targeting SHP2 has become a potential cancer treatment strategy. In this study, ellagic acid was first reported as a competitive inhibitor of SHP2, with an IC50 value of 0.69 ± 0.07 µM, and its inhibitory potency was 34.86 times higher that of the positive control NSC87877. Ellagic acid also had high inhibitory activity on the SHP2-E76K and SHP2-E76A mutants, with the IC50 values of 1.55 ± 0.17 µM and 0.39 ± 0.05 µM, respectively. Besides, the IC50 values of ellagic acid on homologous proteins SHP1, PTP1B, and TCPTP were 0.93 ± 0.08 µM, 2.04 ± 0.28 µM, and 11.79 ± 0.83 µM, with selectivity of 1.35, 2.96, and 17.09 times, respectively. The CCK8 proliferation experiment exhibited that ellagic acid would inhibit the proliferation of various cancer cells. It was worth noting that the combination of ellagic acid and KRASG12C inhibitor AMG510 would produce a strong synergistic effect in inhibiting NCI-H358 cells. Western blot experiment exhibited that ellagic acid would downregulate the phosphorylation levels of Erk and Akt in NCI-H358 and MDA-MB-468 cells. Molecular docking and molecular dynamics studies revealed the binding information between SHP2 and ellagic acid. In summary, this study provides new ideas for the development of SHP2 inhibitors.


Ellagic Acid , Neoplasms , Humans , Ellagic Acid/pharmacology , Molecular Docking Simulation , Neoplasms/drug therapy , Enzyme Inhibitors/chemistry , Phosphorylation
10.
Langmuir ; 40(1): 744-750, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38103033

To explore, highly active electrocatalysts are essential for water splitting materials. Polyoxometalates (POMs) have drawn interesting attention in recent years due to their abundant structure and unique electrocatalytic properties. In this study, by using a POM-based precursor Co2Mo10, novel bimetallic sulfide (CoS2-MoS2) nanocomposites are rationally designed and synthesized under hydrothermal conditions. The incorporation of Co2+ to the host electrocatalyst could effectively increase the exposure of active sites of MoS2. Compared to pure MoS2, the CoS2-MoS2 nanocomposite exhibited a perfect hydrogen evolution reaction (HER) ability, for it merely requires overpotentials of 120 and 153 mV for 10 mA cm-2 working current density toward the HER in 1 M KOH and 0.5 M H2SO4 electrolyte systems, respectively. Additionally, the nanocomposite exhibited outstanding chemical stability and long-term durability. This study presents a novel strategy that utilizes POMs to enrich the exposed edge sites of MoS2, resulting in the preparation of efficient electrocatalysts.

11.
Front Plant Sci ; 14: 1240719, 2023.
Article En | MEDLINE | ID: mdl-37915511

Earthquakes are environmental disturbances affecting ecosystem functioning, health, and biodiversity, but their potential impacts on plant-soil interface are still poorly understood. In this study, grassland habitats in areas near and away from the seismo-fault in Madou, a region typical of alpine conditions on the Qinghai-Tibetan Plateau, were randomly selected. The impacts of earthquake on soil properties and plant nutrient content in the short term were emphasized, and their potential relationships with community diversity and productivity were examined. According to the findings of the study, the Maduo earthquake led to a decrease in soil nutrient content in alpine grassland ecosystems, especially soil TC, TN, TP, TCa, AP, AK, NH4 +-N, and SOC, and inhibited the absorption of N, Ca, and Mg nutrients by plants. In addition, the diversity and productivity of communities were affected by both direct and indirect earthquake pathways. The negative impacts of seismic fracture on soil structure had the most significant direct impact on plant community diversity. Earthquakes also indirectly reduced community productivity by reducing the soil N content and inhibiting the absorption of plant nutrients. Our findings suggested that earthquakes could potentially decrease the stability of the alpine grassland ecosystem on the QTP by affecting nutrient availability at the plant-soil interface.

12.
iScience ; 26(11): 108167, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37920663

Photocatalytic depolymerization is a high value-added approach for utilization of lignin. In this study, magnetic microspheres of FeCoRu@SiO2-TiO2 were synthesized by a co-precipitation method. Doping with CoOx and RuOx was used to improve the response to visible light, and doping with TiO2 was used to improve the response to ultraviolet light (λ < 380 nm). The lignin model compound depolymerization rate was >90%. The electron paramagnetic resonance results showed that the reaction occurred in two steps (aerobic phase and oxygen-free phase). Most of the O2- was produced in the first step by cleavage of C-O bonds. The second step was inhibited in an oxygen-free atmosphere. This research provides a valid method for enhancing the photocatalytic properties using full-spectrum light and exploring the lignin photocatalytic depolymerization mechanism. Further research is required to develop the catalyst properties and performance to produce radicals.

13.
Front Plant Sci ; 14: 1256084, 2023.
Article En | MEDLINE | ID: mdl-37929180

This study evaluated the effects of arbuscular mycorrhizal fungi inoculation on the growth and photosynthetic performance of alfalfa under different phosphorus application levels. This experiment adopts two-factors completely random design, and sets four levels of fungi application: single inoculation with Funneliformis mosseae (Fm, T1), single inoculation with Glomus etunicatum (Ge, T2) and mixed inoculation with Funneliformis mosseae × Glomus etunicatum (Fm×Ge, T3) and treatment uninfected fungus (CK, T0). Four phosphorus application levels were set under the fungi application level: P2O5 0 (P0), 50 (P1), 100 (P2) and 150 (P3) mg·kg-1. There were 16 treatments for fungus phosphorus interaction. The strain was placed 5 cm below the surface of the flowerpot soil, and the phosphate fertilizer was dissolved in water and applied at one time. The results showed that the intercellular CO2 concentration (Ci) of alfalfa decreased at first and then increased with the increase of phosphorus application, except for light use efficiency (LUE) and leaf instantaneous water use efficiency (WUE), other indicators showed the opposite trend. The effect of mixed inoculation (T3) was significantly better than that of non-inoculation (T0) (p < 0.05). Pearson correlation analysis showed that Ci was significantly negatively correlated with alfalfa leaf transpiration rate (Tr) and WUE (p < 0.05), and was extremely significantly negatively correlated with other indicators (p < 0.01). The other indexes were positively correlated (p < 0.05). This may be mainly because the factors affecting plant photosynthesis are non-stomatal factors. Through the comprehensive analysis of membership function, the indexes of alfalfa under different treatments were comprehensively ranked, and the top three were: T3P2>T3P1>T1P2. Therefore, when the phosphorus treatment was 100 mg·kg-1, the mixed inoculation of Funneliformis mosseae and Glomus etunicatum had the best effect, which was conducive to improving the photosynthetic efficiency of alfalfa, increasing the dry matter yield, and improving the economic benefits of local alfalfa in Xinjiang. In future studies, the anatomical structure and photosynthetic performance of alfalfa leaves and stems should be combined to clarify the synergistic mechanism of the anatomical structure and photosynthetic performance of alfalfa.

14.
J Clin Invest ; 134(3)2023 Nov 21.
Article En | MEDLINE | ID: mdl-37988165

Oxygen and nutrient deprivation are common features of solid tumors. Although abnormal alternative splicing (AS) has been found to be an important driving force in tumor pathogenesis and progression, the regulatory mechanisms of AS that underly the adaptation of cancer cells to harsh microenvironments remain unclear. Here, we found that hypoxia- and nutrient deprivation-induced asparagine endopeptidase (AEP) specifically cleaved DDX3X in a HIF1A-dependent manner. This cleavage yields truncated carboxyl-terminal DDX3X (tDDX3X-C), which translocates and aggregates in the nucleus. Unlike intact DDX3X, nuclear tDDX3X-C complexes with an array of splicing factors and induces AS events of many pre-mRNAs; for example, enhanced exon skipping (ES) in exon 2 of the classic tumor suppressor PRDM2 leads to a frameshift mutation of PRDM2. Intriguingly, the isoform ARRB1-Δexon 13 binds to glycolytic enzymes and regulates glycolysis. By utilizing in vitro assays, glioblastoma organoids, and animal models, we revealed that AEP/tDDX3X-C promoted tumor malignancy via these isoforms. More importantly, high AEP/tDDX3X-C/ARRB1-Δexon 13 in cancerous tissues was tightly associated with poor patient prognosis. Overall, our discovery of the effect of AEP-cleaved DDX3X switching on alternative RNA splicing events identifies a mechanism in which cancer cells adapt to oxygen and nutrient shortages and provides potential diagnostic and/or therapeutic targets.


Alternative Splicing , Glioblastoma , Animals , Humans , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Glioblastoma/pathology , Oxygen/metabolism , Protein Isoforms/metabolism , RNA Splicing , RNA Splicing Factors/metabolism , Tumor Microenvironment
15.
Int J Biol Macromol ; 253(Pt 8): 127510, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37865363

Facing the increasing electromagnetic interference (EMI) pollution in the living environment, it is a new trend to explore an efficient EMI shielding material with facile fabrication and a wide range of application scenarios. A hydrophobic composite paper composed of silver nanowires (AgNWs) and kapok microfibers cellulose (MFC) was modified by methyl trimethoxy silane (MTMS) through a simple method. As a result, the composite paper has a good EMI shielding effectiveness (EMI SE) of 61.7 dB with electrical conductivity of 695.41 S/cm. The modification of MTMS improved the thermal stability performance of composite paper, which also increased its water contact angle to 113°. The free silver ions (Ag+) released from AgNWs can kill surrounding microbial bacteria, endowing the composite paper with good antibacterial property. Water resistance and antibacterial property enable MTMS/AgNWs/MFC composite paper to cope with complex application environments.


Nanowires , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Electric Conductivity , Methylcellulose , Water
16.
Mater Today Bio ; 23: 100800, 2023 Dec.
Article En | MEDLINE | ID: mdl-37766897

Repairing cartilage/subchondral bone defects that involve subchondral bone is a major challenge in clinical practice. Overall, the integrated repair of the structure and function of the osteochondral (OC) unit is very important. Some studies have demonstrated that the differentiation of cartilage is significantly enhanced by reducing the intake of nutrients such as lipids. This study demonstrates that using starvation can effectively optimize the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs). A hyaluronic acid (HA)-based hydrogel containing starved BMSCs-EVs displayed continuous release for more than 3 weeks and significantly promoted the proliferation and biosynthesis of chondrocytes around the defect regulated by the forkhead-box class O (FOXO) pathway. When combined with vascular inhibitors, the hydrogel inhibited cartilage hypertrophy and facilitated the regeneration of hyaline cartilage. A porous methacrylate gelatine (GelMA)-based hydrogel containing calcium salt loaded with thrombin rapidly promoted haematoma formation upon contact with the bone marrow cavity to quickly block the pores and prevent the blood vessels in the bone marrow cavity from invading the cartilage layer. Furthermore, the haematoma could be used as nutrients to accelerate bone survival. The in vivo experiments demonstrated that the multifunctional lineage-specific hydrogel promoted the integrated regeneration of cartilage/subchondral bone. Thus, this hydrogel may represent a new strategy for osteochondral regeneration and repair.

17.
Arch Orthop Trauma Surg ; 143(12): 7063-7071, 2023 Dec.
Article En | MEDLINE | ID: mdl-37668661

BACKGROUND: The optimal internal fixation for non-displaced femoral neck fractures remains controversial. This study aimed to compare the clinical results of the percutaneous compression plate (PCCP) with parallel screws (PS) in treating femoral neck fractures in elderly patients. MATERIALS AND METHODS: A total of 218 patients who underwent internal fixation were randomized to receive either a percutaneous compression plate (PCCP group) or parallel screws (PS group) using a computerized random sequence generator which was used to assign the order of randomization. Patients were assessed by the operating time, intraoperative blood loss, hemoglobin level drop, postoperative hospital stay, the time to full weight-bearing, reduction quality, fracture healing time, Harris hip score, and postoperative complications. RESULTS: There was no significant difference between PCCP and PS groups regarding operative time, intraoperative blood loss, hemoglobin level drop, postoperative hospital stays, reduction quality, and Harris hip score (p > 0.05). The time to full weight-bearing and the fracture healing time in the PCCP group were shorter than those in the PS group (p < 0.05). The overall complication rates were slightly lower in the PCCP compared to the PS patients, but there was no significant difference (p > 0.05). However, the implant failure rate was significantly higher in the PS group compared to the PCCP group (p < 0.05). CONCLUSIONS: The present study suggests that the PCCP is superior to the parallel screws fixation in the treatment of non-displaced elderly femoral neck fractures in terms of earlier full weight-bearing, shorter fracture healing time, and lower implant failure rate. Therefore, it may be a better therapeutic strategy for non-displaced femoral neck fractures in elderly patients.


Blood Loss, Surgical , Femoral Neck Fractures , Humans , Aged , Treatment Outcome , Prospective Studies , Bone Screws , Femoral Neck Fractures/surgery , Fracture Fixation, Internal/methods , Hemoglobins , Retrospective Studies
18.
Eur J Med Res ; 28(1): 354, 2023 Sep 16.
Article En | MEDLINE | ID: mdl-37717007

Osteosarcoma is the most prevalent and fatal type of bone tumor. Despite advancements in the treatment of other cancers, overall survival rates for patients with osteosarcoma have stagnated over the past four decades Multiple-drug resistance-the capacity of cancer cells to become simultaneously resistant to multiple drugs-remains a significant obstacle to effective chemotherapy. The recent studies have shown that noncoding RNAs can regulate the expression of target genes. It has been proposed that "competing endogenous RNA" activity forms a large-scale regulatory network across the transcriptome, playing important roles in pathological conditions such as cancer. Numerous studies have highlighted that circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) can bind to microRNA (miRNA) sites as competitive endogenous RNAs, thereby affecting and regulating the expression of mRNAs and target genes. These circRNA/lncRNA-associated competitive endogenous RNAs are hypothesized to play significant roles in cancer initiation and progression. Noncoding RNAs (ncRNAs) play an important role in tumor resistance to chemotherapy. However, the molecular mechanisms of the lncRNA/circRNA-miRNA-mRNA competitive endogenous RNA network in drug resistance of osteosarcoma remain unclear. An in-depth study of the molecular mechanisms of drug resistance in osteosarcoma and the elucidation of effective intervention targets are of great significance for improving the overall recovery of patients with osteosarcoma. This review focuses on the molecular mechanisms underlying chemotherapy resistance in osteosarcoma in circRNA-, lncRNA-, and miRNA-mediated competitive endogenous networks.


Bone Neoplasms , MicroRNAs , Osteosarcoma , RNA, Long Noncoding , Humans , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Drug Resistance, Neoplasm/genetics , Osteosarcoma/drug therapy , Osteosarcoma/genetics , RNA, Messenger , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics
19.
Plants (Basel) ; 12(16)2023 Aug 17.
Article En | MEDLINE | ID: mdl-37631178

BACKGROUND: Sainfoin is a forage legume that is widely distributed around the world and is beneficial for animals owing to the characteristics of its condensed tannins (CTs), which, from certain plants, can prolong the aerobic stability of silage. METHODS: The present study investigated whether sainfoin CTs can prolong aerobic stability by adding polyethylene glycol (PEG) to inactivate CT activity in the silage system. RESULTS: The results showed that aerobic stability increased under the PEG treatment (p < 0.05). Ammonia nitrogen (0.71 g/kg DM vs. 0.94 g/kg DM; p < 0.05) was higher in the PEG-treated group compared with the control after 3 d of aerobic exposure. BA was detected only in the PEG-treated group upon aerobic exposure. Yeasts were more abundant in the control compared with the PEG-treated group after 7 d of aerobic exposure, after which the relative abundance of Lactobacillus was lower in the PEG-treated group (65.01% vs. 75.01% in the control; p < 0.05), while the relative abundance of Pediococcus was higher in the PEG-treated group compared with the control (10.9% vs. 4.49%, respectively; p < 0.05).The relative abundances of Apiotrichum and Aspergillus were lower in the control than in the PEG-treated group after 7 d of aerobic exposure. CONCLUSIONS: The results suggested that sainfoin CTs decreased aerobic stability, but could inhibit certain bacteria and fungi, such as Pediococcus and Apiotrichum, and preserve the protein content during the aerobic exposure of silage.

20.
Sci Rep ; 13(1): 13747, 2023 08 23.
Article En | MEDLINE | ID: mdl-37612457

Planting alfalfa in grey desert soil can have significant effects on soil nutrient levels, microbial communities, and overall soil improvement. High-throughput sequencing technology was used to explore the relationship between the rhizosphere microbial community structure of grey desert soil planted with different alfalfa varieties (Aohan, WL525HQ, Knight2, Kangsai, Victoria, and WL712), alfalfa characteristics and rhizosphere soil physicochemical properties. Alfalfa planting increased the nitrogen and organic matter in the grey desert soil, and the effects in Victoria, Kangsai, and Aohan were relatively better than those in the unplanted areas and other alfalfa areas. The Chao1 and Shannon indexes showed that the diversity and relative abundance of bacteria and fungi in Kangsai were significantly higher than those in the unplanted areas and other alfalfa areas. Redundancy analysis showed that available nitrogen and phosphorus, as well as fresh weight, significantly affected the changes in fungal and bacterial communities. Variance partitioning analysis showed that soil and alfalfa growth characteristics explained 50.04% and 51.58% of the structural changes in the bacteria and fungi, respectively. Therefore, planting alfalfa changed the community structure of bacteria and fungi, as well as the content of soil nutrients, and different varieties of alfalfa had different effects on soil improvement.


High-Throughput Nucleotide Sequencing , Medicago sativa , Analysis of Variance , Nitrogen , Soil
...