Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 101, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705921

RESUMEN

Temporal solitons have been the focus of much research due to their fascinating physical properties. These solitons can form bound states, which are fundamentally crucial modes in fiber laser and present striking analogies with their matter molecules counterparts, which means they have potential applications in large-capacity transmission and all-optical information storage. Although traditionally, second-order dispersion has been the dominant dispersion for conventional solitons, recent experimental and theoretical research has shown that pure-high-even-order dispersion (PHEOD) solitons with energy-width scaling can arise from the interaction of arbitrary negative-even-order dispersion and Kerr nonlinearity. Despite these advancements, research on the bound states of PHEOD solitons is currently non-existent. In this study, we obtained PHEOD bound solitons in a fiber laser using an intra-cavity spectral pulse shaper for high-order dispersion management. Specifically, we experimentally demonstrate the existence of PHEOD solitons and PHEOD bound solitons with pure-quartic, -sextic, -octic, and -decic dispersion. Numerical simulations corroborate these experimental observations. Furthermore, vibrating phase PHEOD bound soliton pairs, sliding phase PHEOD bound soliton pairs, and hybrid phase PHEOD bound tri-soliton are discovered and characterized. These results broaden the fundamental understanding of solitons and show the universality of multi-soliton patterns.

2.
Neurol Res ; 46(7): 583-592, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797679

RESUMEN

BACKGROUND: Glioma is a common intracranial tumor, exhibiting a high degree of aggressiveness and invasiveness. Pyruvate kinase M2 (PKM2) is overexpressed in glioma tissues. However, the biological role of PKM2 in glioma is unclear. METHODS: The qRT-PCR, CCK-8, Transwell, flow cytometry detection, western blot assays, ELISA assay, and pyruvate kinase activity assays were performed in glioma cells transfected with PKM2 shRNA to explore the function of PKM2 in glioma progression. Then, STRING website was used to predict the proteins that interacted with PKM2, and Co-IP assay was conducted to further validate their interaction. Subsequently, the above experiments were performed again to find the effect of catenin beta 1 (CTNNB1) overexpression on PKM2-deficient glioma cells. The transplanted tumor models were also established to further validate our findings. RESULTS: PKM2 was up-regulated in glioma cells and tissues. After inhibiting PKM2, the proliferation, migration, glycolysis, and EMT of glioma cells were significantly decreased, and the proportion of apoptosis was increased. The prediction results of STRING website showed that CTNNB1 and PKM2 had the highest interaction score. The correlation between CTNNB1 and PKM2 was further confirmed by Co-IP test. PKM2 knockdown suppressed glioma cell proliferation, migration, glycolysis, and EMT, while CTNNB1 overexpression rescued these inhibitory effects. Correspondingly, PKM2 knockdown inhibited glioma growth in vivo. CONCLUSION: In summary, these findings indicated that PKM2 promotes glioma progression by mediating CTNNB1 expression, providing a possible molecular marker for the clinical management of gliomas.


Asunto(s)
Neoplasias Encefálicas , Proliferación Celular , Progresión de la Enfermedad , Glioma , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas , beta Catenina , Glioma/patología , Glioma/genética , Glioma/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Animales , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ratones Desnudos , Movimiento Celular/fisiología , Apoptosis/fisiología , Regulación Neoplásica de la Expresión Génica , Masculino , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética
3.
Ren Fail ; 46(1): 2300725, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38197421

RESUMEN

The incidence and mortality of chronic kidney disease (CKD) are increasing globally. Studies have demonstrated the significance of genetic risk factors in the progression of CKD. Telomerase reverse transcriptase (TERT) may be implicated in the development of CKD. This study aimed to investigate the correlation between TERT gene variants and susceptibility to CKD in the Chinese population. A total of 507 patients with CKD and 510 healthy controls were recruited for this case-control study. Four candidate loci were identified using the MassARRAY platform. Logistic regression analysis was employed to assess the association between TERT gene variants and the risk of CKD. The false positive reporting probability (FPRP) method was utilized to evaluate the validity of statistically significant associations. The multifactorial dimensionality reduction (MDR) method was used to evaluate the interaction between SNPs and the risk of CKD. Furthermore, discrepancies in the clinical features of subjects with diverse genotypes were evaluated using one-way analysis of variance (ANOVA). Our findings revealed a correlation between rs2735940 and rs4635969 and an increased risk of CKD. Stratification analysis indicated that rs4635969 was related to an increased risk of CKD in different subgroups (age ≤ 50 years and male). MDR analysis indicated that the two-site model (rs2735940 and rs4635969) was the best prediction model. Furthermore, the rs2735940 GG genotype was found to be linked to an increased level of microalbuminuria (MAU) in patients with CKD. Our study is the first to reveal a connection between TERT gene variants and susceptibility to CKD, providing new insights into the field of nephrology.


Asunto(s)
Insuficiencia Renal Crónica , Telomerasa , Humanos , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , China/epidemiología , Estudios de Asociación Genética , Genotipo , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Telomerasa/genética
4.
Regen Biomater ; 11: rbad093, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173766

RESUMEN

Bone defect is a serious threat to human health. Osteopractic total flavone (OTF) extracted from Rhizoma Drynariae has the effects of promoting bone formation. Panax notoginseng saponin (PNS) has the function of activating blood circulation and removing blood stasis. Therefore, combining OTF and PNS with poly(l-lactic acid) (PLLA) to prepare scaffolds containing PNS in the outer layer and OTF in the inner layer is a feasible solution to rapidly remove blood stasis and continue to promote bone formation. In addition, degradation rate of the scaffold can affect the release time of two drugs. Adding Mg particles in outer layer can control the degradation rate of the scaffold and the drug release. Therefore, a double-layer drug-loaded PLLA scaffold containing OTF in the inner layer, PNS and Mg particles in the outer layer was prepared and characterized to verify its feasibility. The experimental results showed that the scaffold can realize the rapid release of PNS and the continuous release of OTF. With the increase of Mg content, the drug release rate became faster. Animal experiments showed that the scaffold containing 5% Mg particles could effectively promote the formation of new bone in the bone defect of male New Zealand white rabbits, and the area and density of new bone formed were much better than those in the control group. These results demonstrated that the double-layer drug-loaded scaffold had good ability to promote bone repair.

5.
Front Neurol ; 14: 1301046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38073624

RESUMEN

Background and purpose: Favorable wall apposition of a flow diverter (FD) is essential for the treatment of intracranial aneurysms. The irretrievability and final drop point uncertainty of the proximal tail of the FD increase the difficulty of achieving good tail apposition. Therefore, understanding the factors associated with FD tail malapposition would be helpful for clinical practice. Methods: A total of 153 patients with 161 FD deployments in the carotid artery between 2020 and 2023 were retrospectively collected from our center's database for this study. Patient demographics, aneurysm characteristics, FDs, carotid artery anatomy, periprocedural complications, discharge modified Rankin scale (MRS) scores, and follow-up outcomes were investigated by comparing patients with and without FD tail malapposition. Comparisons were made with t tests or Kruskal-Wallis tests for continuous variables and the Pearson χ2 or Fisher exact test for categorical variables. Logistic regression was conducted to determine the predictors of malapposition. Results: Tail malapposition occurred for 41 out of the 161 FDs (25.5%). Univariate analysis revealed that the FD brand, FD length, FD distal to proximal vessel diameter ratio, FD tail position (straight or curved), and curvature of the vessel curve were significantly associated with FD tail malapposition (p < 0.05). Further multivariate analysis demonstrated that the application of a surpass FD (p = 0.04), the FD distal to proximal vessel diameter ratio (p = 0.022), the FD tail position (straight or curved) (p < 0.001) and the curvature of the vessel curve (p < 0.001) were factors significantly associated with FD tail malapposition. No significant difference was found in periprocedural or follow-up outcomes. The classification of FD tail malapposition was determined from imaging. The two major patterns of FD tail malapposition are unattached tails and protrusive tails. Conclusion: FD tail malapposition might be associated with a larger FD distal to the proximal vessel diameter difference, a curved vessel where the FD tail is located, and a larger curvature of the vessel curve. FD tail malapposition can be classified into unattached tails and protrusive tails, which have their own characteristics and should be noted in clinical practice.

6.
Opt Express ; 31(24): 40781-40791, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38041370

RESUMEN

We demonstrate the generation of both continuous-wave (CW) and Q-switched cylindrical vector beams (CVBs) from a mid-infrared Er3+-doped ZBLAN (Er:ZBLAN) fiber laser at ∼ 2.8 µm. A customized S-waveplate is incorporated as the intracavity mode converter to achieve the mid-infrared CVBs. Switchable modes of CVBs between the radially and azimuthally polarized beam can be realized easily by manipulating the cavity conditions. A maximum output power of ∼250 mW is achieved for the CW CVBs. In the short-pulsed CVBs operation regime, both the active and passive Q-switching modes are realized with a pulse duration of hundreds of nanoseconds. The proposed mid-infrared cylindrical vector lasers can have significant potential for applications in biomedicine, optical trapping, material processing and optical communication.

7.
Front Bioeng Biotechnol ; 11: 1193033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214287

RESUMEN

Due to the wide presence of microplastics in water, the interaction between microplastic particles and microalgae cells in medium merits the attention of researchers. Microplastic particles can impact the original transmission of light radiation in water bodies since the refractive index of microplastics is different from that of water bodies. Accordingly, the accumulation of microplastics in water bodies will certainly impact microalgal photosynthesis. Therefore, experimental measurements and theoretical studies characterizing the radiative properties of the interaction between light and microplastic particles are highly significant. The extinction and absorption coefficient/cross-section of polyethylene terephthalate and polypropylene were experimentally measured using transmission and integrating methods in the spectral range of 200-1,100 nm. The absorption cross-section of PET shows remarkable absorption peaks in the vicinity of 326 nm, 700 nm, 711 nm, 767 nm, 823 nm, 913 nm, and 1,046 nm. The absorption cross-section of PP has distinctive absorption peaks near 334 nm, 703 nm, and 1,016 nm. The measured scattering albedo of the microplastic particles is above 0.7, indicating that both microplastics are scattering dominant media. Based on the results of this work, an in-depth understanding of the interaction between microalgal photosynthesis and microplastic particles in the medium will be obtained.

8.
Opt Express ; 31(2): 1787-1798, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785206

RESUMEN

Pure-quartic solitons (PQSs) are gradually becoming a hotspot in recent years due to their potential advantage to achieve high energy. Meanwhile, the fundamental research of PQSs is still in the fancy stage, and exploring soliton dynamics can promote the development of PQSs. Herein, we comprehensively and numerically investigate the impact of saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The result indicates that altering the above parameters makes PQSs exhibit pulsating or creeping dynamics similar to traditional solitons. Moreover, introducing an intra-cavity filter combined with intra-cavity large fourth-order dispersion makes PQSs go through stationary, pulsating to erupting. That is, the intra-cavity filter changes PQS dynamics. These findings provide new insights into PQS dynamics in fiber lasers.

10.
Acta Biochim Biophys Sin (Shanghai) ; 54(9): 1365-1375, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36148952

RESUMEN

Renal fibrosis is most common among chronic kidney diseases. Molecular studies have shown that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) participate in renal fibrosis, while the roles of lncRNA taurine upregulated gene 1 (TUG1) and miR-140-3p in hyperuricemia-induced renal fibrosis remain less investigated. In this study, a rat hyperuricemia model is constructed by oral administration of adenine. TUG1, miR-140-3p, and cathepsin D (CtsD) expression levels in rat models are measured. After altering TUG1, miR-140-3p, or CtsD expression in modelled rats, biochemical indices, including uric acid (UA), serum creatine (SCr), blood urea nitrogen (BUN), and 24-h urine protein are detected, pathological changes in the renal tissues, and renal fibrosis are examined. In renal tissues from hyperuricemic rats, TUG1 and CtsD are upregulated, while miR-140-3p is downregulated. Inhibiting TUG1 or CtsD or upregulating miR-140-3p relieves renal fibrosis in hyperuricemic rats. Downregulated miR-140-3p reverses the therapeutic effect of TUG1 reduction, while overexpression of CtsD abolishes the role of miR-140-3p upregulation in renal fibrosis. Collectively, this study highlights that TUG1 inhibition upregulates miR-140-3p to ameliorate renal fibrosis in hyperuricemic rats by inhibiting CtsD.


Asunto(s)
Hiperuricemia , Enfermedades Renales , MicroARNs , ARN Largo no Codificante , Ratas , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Taurina , Hiperuricemia/genética , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Renales/genética , Fibrosis , Proliferación Celular/genética
11.
J Clin Lab Anal ; 36(10): e24673, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36036748

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) accounts for 85%-90% of primary liver cancer. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting the 3'UTR of mRNA. Abnormal expression and regulation of miRNAs are involved in the occurrence and progression of HCC, and miRNAs can also play a role in the diagnosis and treatment of HCC as oncogenes or tumor suppressors. METHODS: In the past decades, a large number of studies have shown that miRNAs play an essential regulatory role in HCC and have potential as biomarkers for HCC. We reviewed the literature to summarize these studies. RESULTS: By reviewing the literature, we retrospected the roles of miRNAs in the development, diagnosis, treatment, and prognosis of HCC, and put forward prospects for the further research on miRNAs in the precision treatment of HCC. CONCLUSION: MicroRNAs are important regulators and biomarkers in the occurrence, progression, outcome, and treatment of HCC, and can provide new targets and strategies for improving the therapeutic effect of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Regiones no Traducidas 3' , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico
12.
Bone Res ; 10(1): 59, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042209

RESUMEN

The bone matrix plays an indispensable role in the human body, and its unique biomechanical and mechanobiological properties have received much attention. The bone matrix has unique mechanical anisotropy and exhibits both strong toughness and high strength. These mechanical properties are closely associated with human life activities and correspond to the function of bone in the human body. None of the mechanical properties exhibited by the bone matrix is independent of its composition and structure. Studies on the biomechanics of the bone matrix can provide a reference for the preparation of more applicable bone substitute implants, bone biomimetic materials and scaffolds for bone tissue repair in humans, as well as for biomimetic applications in other fields. In providing mechanical support to the human body, bone is constantly exposed to mechanical stimuli. Through the study of the mechanobiology of the bone matrix, the response mechanism of the bone matrix to its surrounding mechanical environment can be elucidated and used for the health maintenance of bone tissue and defect regeneration. This paper summarizes the biomechanical properties of the bone matrix and their biological significance, discusses the compositional and structural basis by which the bone matrix is capable of exhibiting these mechanical properties, and studies the effects of mechanical stimuli, especially fluid shear stress, on the components of the bone matrix, cells and their interactions. The problems that occur with regard to the biomechanics and mechanobiology of the bone matrix and the corresponding challenges that may need to be faced in the future are also described.

13.
Nanomaterials (Basel) ; 12(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35808105

RESUMEN

Since atomically thin two-dimensional (2D) graphene was successfully synthesized in 2004, it has garnered considerable interest due to its advanced properties. However, the weak optical absorption and zero bandgap strictly limit its further development in optoelectronic applications. In this regard, other 2D materials, including black phosphorus (BP), transition metal dichalcogenides (TMDCs), 2D Te nanoflakes, and so forth, possess advantage properties, such as tunable bandgap, high carrier mobility, ultra-broadband optical absorption, and response, enable 2D materials to hold great potential for next-generation optoelectronic devices, in particular, mid-infrared (MIR) band, which has attracted much attention due to its intensive applications, such as target acquisition, remote sensing, optical communication, and night vision. Motivated by this, this article will focus on the recent progress of semiconducting 2D materials in MIR optoelectronic devices that present a suitable category of 2D materials for light emission devices, modulators, and photodetectors in the MIR band. The challenges encountered and prospects are summarized at the end. We believe that milestone investigations of 2D materials beyond graphene-based MIR optoelectronic devices will emerge soon, and their positive contribution to the nano device commercialization is highly expected.

14.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683665

RESUMEN

The BP/InSe heterojunction has attracted the attention of many fields in successful combined high hole mobility of black phosphorus (BP) and high electron mobility of indium selenide (InSe), and enhanced the environmental stability of BP. Nevertheless, photonics research on the BP/InSe heterostructure was insufficient, while both components are considered promising in the field. In this work, a two-dimensional (2D) BP/InSe heterostructure was fabricated using the liquid-phase exfoliation method. Its linear and non-linear optical (NLO) absorption was characterized by ultraviolet-visible-infrared and Open-aperture Z-scan technology. On account of the revealed superior NLO properties, an SA based on 2D BP/InSe was prepared and embedded into an erbium-doped fiber laser, traditional soliton pulses were observed at 1.5 µm with the pulse duration of 881 fs. Furthermore, harmonic mode locking of bound solitons and dark-bright soliton pairs were also obtained in the same laser cavity due to the cross-coupling effect. The stable mode-locked operation can be maintained for several days, which overcome the low air stability of BP. This contribution further proves the excellent optical properties of 2D BP/InSe heterostructure and provides new probability of developing nano-photonics devices for the applications of double pulses laser source and long-distance information transmission.

15.
Materials (Basel) ; 15(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35744339

RESUMEN

Tissue engineering is one of the most effective ways to treat bone defects in recent years. However, current highly active bone tissue engineering (BTE) scaffolds are mainly based on the addition of active biological components (such as growth factors) to promote bone repair. High cost, easy inactivation and complex regulatory requirements greatly limit their practical applications. In addition, conventional fabrication methods make it difficult to meet the needs of personalized customization for the macroscopic and internal structure of tissue engineering scaffolds. Herein, this paper proposes to select five natural biominerals (eggshell, pearl, turtle shell, degelatinated deer antler and cuttlebone) with widely available sources, low price and potential osteo-inductive activity as functional particles. Subsequently compounding them into L-polylactic acid (PLLA) biomaterial ink to further explore 3D printing processes of the composite scaffold, and reveal their potential as biomimetic 3D scaffolds for bone tissue repair. The research results of this project provide a new idea for the construction of a 3D scaffold with growth-factor-free biomimetic structure, personalized customization ability and osteo-inductive activity.

16.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328712

RESUMEN

Salinity reduces agricultural productivity majorly by inhibiting seed germination. Exogenous salicylic acid (SA) can prevent the harm caused to rice by salinity, but the mechanisms by which it promotes rice seed germination under salt stress are unclear. In this study, the inhibition of germination in salt-sensitive Nipponbare under salt stress was greater than that in salt-tolerant Huaidao 5. Treatment with exogenous SA significantly improved germination of Nipponbare, but had little effect on Huaidao 5. The effects of exogenous SA on ion balance, metabolism of reactive oxygen species (ROS), hormone homeostasis, starch hydrolysis, and other physiological processes involved in seed germination of rice under salt stress were investigated. Under salt stress, Na+ content and the Na+/K+ ratio in rice seeds increased sharply. Seeds were subjected to ion pressure, which led to massive accumulation of H2O2, O2-, and malonaldehyde (MDA); imbalanced endogenous hormone homeostasis; decreased gibberellic acid (GA1 and GA4) content; increased abscisic acid (ABA) content; inhibition of α-amylase (EC 3.2.1.1) activity; and slowed starch hydrolysis rate, all which eventually led to the inhibition of the germination of rice seeds. Exogenous SA could effectively enhance the expression of OsHKT1;1, OsHKT1;5, OsHKT2;1 and OsSOS1 to reduce the absorption of Na+ by seeds; reduce the Na+/K+ ratio; improve the activities of SOD, POD, and CAT; reduce the accumulation of H2O2, O2-, and MDA; enhance the expression of the GA biosynthetic genes OsGA20ox1 and OsGA3ox2; inhibit the expression of the ABA biosynthetic gene OsNCED5; increase GA1 and GA4 content; reduce ABA content; improve α-amylase activity, and increase the content of soluble sugars. In summary, exogenous SA can alleviate ion toxicity by reducing Na+ content, thereby helping to maintain ROS and hormone homeostasis, promote starch hydrolysis, and provide sufficient energy for seed germination, all of which ultimately improves rice seed germination under salt stress. This study presents a feasible means for improving the germination of direct-seeded rice in saline soil.


Asunto(s)
Germinación , Oryza , Ácido Abscísico/metabolismo , Homeostasis , Hormonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Oryza/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Estrés Salino , Semillas/metabolismo , Sodio/metabolismo , Almidón/metabolismo , alfa-Amilasas/metabolismo
17.
Cell Cycle ; 21(5): 450-461, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35025700

RESUMEN

Dysfunctional histone deacetylases (HDACs) elicit unrestrained fibrosis and damage to organs. With regard to the link between HDACs and fibrosis, this research is practiced to decipher the concrete mechanism of HDAC3 in hyperuricemia (HN)-induced renal interstitial fibrosis (RIF) from microRNA-19b-3p/splicing factor 3b subunit 3 (miR-19b-3p/SF3B3) axis.The HN model was established on rats to induce RIF by oral administration of adenine and potassium oxalate. HN rats were injected with miR-19b-3p- or HDAC3-related vectors to figure out their effects on RIF through detecting 24-h urine protein, uric acid (UA), blood urea nitrogen (BUN) and serum creatinine (Scr) contents and α-smooth muscle actin (α-SMA), transforming growth factor ß1 (TGF-ß1) and fibronectin (FN) contents in renal tissues and observing pathological damages and RIF index of renal tissues. HDAC3, miR-19b-3p and SF3B3 expression in renal tissues were tested, along with their interactions.Elevated HDAC3 and SF3B3 and reduced miR-19b-3p were displayed in renal tissues of HN rats. Suppressed HDAC3 or promoted miR-19b-3p relieved HN-induced RIF, as reflected by their inhibitory effects on 24 h urine protein, UA, BUN, Scr, α-SMA, TGF-ß1, and FN contents and RIF index and their ameliorated effects on pathological damages of renal tissues. HDAC3 bound to the promoter of miR-19b-3p to regulate SF3B3. MiR-19b-3p depletion abrogated down-regulated HDAC3-induced effects on HN-induced RIF.It is delineated that depressed HDAC3 relives HN-induced RIF through restoring miR-19b-3p and knocking down SF3B3, replenishing the references for RIF curing.


Asunto(s)
Histona Desacetilasas/metabolismo , Hiperuricemia , Enfermedades Renales , MicroARNs , Animales , Femenino , Fibrosis , Humanos , Hiperuricemia/complicaciones , Hiperuricemia/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Factores de Empalme de ARN , Ratas , Factor de Crecimiento Transformador beta1/metabolismo
18.
Front Plant Sci ; 12: 762605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868158

RESUMEN

Fusarium head blight (FHB), a notorious plant disease caused by Fusarium graminearum (F. graminearum), is severely harmful to wheat production, resulting in a decline in grain quality and yield. In order to develop novel control strategies, metabolomics has been increasingly used to characterize more comprehensive profiles of the mechanisms of underlying plant-pathogen interactions. In this research, untargeted and targeted metabolomics were used to analyze the metabolite differences between two wheat varieties, the resistant genotype Sumai 3 and the susceptible genotype Shannong 20, after F. graminearum inoculation. The untargeted metabolomics results showed that differential amino acid metabolic pathways existed in Sumai 3 and Shannong 20 after F. graminearum infection. Additionally, some of the amino acid contents changed greatly in different cultivars when infected with F. graminearum. Exogenous application of amino acids and F. graminearum inoculation assay showed that proline (Pro) and alanine (Ala) increased wheat resistance to FHB, while cysteine (Cys) aggravated the susceptibility. This study provides an initial insight into the metabolite differences of two wheat cultivars under the stress of F. graminearum. Moreover, the method of optimization metabolite extraction presents an effective and feasible strategy to explore the understanding of the mechanisms involved in the FHB resistance.

19.
J Mater Chem B ; 9(46): 9461-9484, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34762090

RESUMEN

Graphdiyne (GDY), which possess sp- and sp2-hybridized carbon and Dirac cones, offers unique physical and chemical properties, including an adjustable intrinsic bandgap, excellent charge carrier transfer efficiency, and superior conductivity compared to other carbon allotropes. These exceptional qualities of GDY and its derivatives have been successfully used in a variety of fields, including catalysis, energy, environmental protection, and biological applications. Herein, we focus on the potential application of GDY and its derivatives in the biomedical domain, including biosensing, biological protection, cancer therapy, and antibacterial agents, demonstrating how the biomimetic behavior of these materials can be a step forward in bridging the gap between nature and applications. Considering the excellent biocompatibility, solubility and selectivity of GDY and its derived materials, they have shown great potential as biosensing and bio-imaging materials. The unusual combination of properties in GDY has been used in biological applications such as "OFF-ON" DNA detection and enzymatic sensing, where GDY has a greater adsorption capacity than graphene and other 2D materials, resulting in increased sensitivity. GDY and its derivatives have also been used in cancer treatment due to their high doxorubicin (DOX) loading capacity (using-stacking) and photothermal conversion ability, and radiation protection since their initial biological use. The poor biodegradation rate of graphene demands the search for new nanomaterials. Accordingly, GDY has better biocompatibility and bio-safety than other 2D nanomaterials, especially graphene and its oxide, due to its absence of aggregation in the physiological environment. Thus, GDY-based nanomaterials have become promising candidates as bio-delivery carriers. Besides, GDY and GDY-based materials have also shown interesting applications in the fields of cell-culture, cell-growth and tissue engineering. Herein, we present a comprehensive review on the applications of GDY and its derivatives as biomedical materials, followed by their future perspectives. This review will provide an outlook for the application of graphene and its derivatives and may open up new horizons to inspire broader interests across various disciplines. Finally, the future prospects for GDY-based materials are examined for their potential biological use.


Asunto(s)
Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Grafito/química , Nanoestructuras/química
20.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(5): 483-486, 2021 Sep 30.
Artículo en Chino | MEDLINE | ID: mdl-34628757

RESUMEN

This article aims to study the factors affecting the flexibility of the tip of an epidural anesthesia catheter. The flexibility of the tip of the epidural anesthesia catheter was tested with a softness tester from four aspects:raw materials, tip structure, tip processing technology, and the outer diameter of the catheter. Highly flexible and malleable polymer material with a smooth tip, the tip softening process and the proper outer diameter can effectively improve the tip flexibility of the epidural anesthesia catheter.


Asunto(s)
Anestesia Epidural , Cateterismo , Catéteres , Espacio Epidural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...