Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Enzyme Microb Technol ; 156: 109989, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35134708

RESUMEN

Thermomicrobium roseum DSM 5159 lipase (TrLip) is an enzyme with marked thermostability and excellent solvent resistance. However, TrLip reveals relatively high catalytic efficiency on short-chain substrates but poor activity against mid-long or long-chain fatty acids, which would limit its industrial application. In this study, ancestral sequence reconstruction (ASR), a common engineering tool for the evolutionary history of protein families, was employed to identify the natural evolutionary trends within 5 Å around the catalytic center. Two mutation libraries were constructed, one for the catalytic center and the other for the pocket flexibility. A total of 69 mutants were expressed and purified in the Escherichia coli expression system to determine the kinetic parameters, and W219G could significantly enhance the catalytic efficiency against substrates with 12-, 16- and 18-carbon side chains. In addition, the double mutant W219G/F265M could further catalyze the breakdown of the above three substrates up to 6.34-, 4.21- and 4.86-folds compared to the wild-type TrLip, while the initial pH and thermostability were maintained. Through bioinformatics analysis, the significantly enhanced catalytic efficiency against longer-side chain substrates should be associated with the reduction of steric hindrance. With the outstanding stability and the promoted activity, TrLip should be of great potential in chemical and food industry.


Asunto(s)
Chloroflexi , Lipasa , Catálisis , Chloroflexi/enzimología , Chloroflexi/genética , Estabilidad de Enzimas , Lipasa/metabolismo , Especificidad por Sustrato
2.
Nat Prod Rep ; 38(8): 1518-1546, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33410446

RESUMEN

Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Ingeniería Metabólica/métodos , Vías Biosintéticas
3.
Nat Commun ; 11(1): 5684, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149172

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Biotechnol Biofuels ; 13: 132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760446

RESUMEN

BACKGROUND: Fumarate is a multifunctional dicarboxylic acid in the tricarboxylic acid cycle, but microbial engineering for fumarate production is limited by the transmission efficiency of its biosynthetic pathway. RESULTS: Here, pathway engineering was used to construct the noncyclic glyoxylate pathway for fumarate production. To improve the transmission efficiency of intermediate metabolites, pathway optimization was conducted by fluctuating gene expression levels to identify potential bottlenecks and then remove them, resulting in a large increase in fumarate production from 8.7 to 16.2 g/L. To further enhance its transmission efficiency of targeted metabolites, transporter engineering was used by screening the C4-dicarboxylate transporters and then strengthening the capacity of fumarate export, leading to fumarate production up to 18.9 g/L. Finally, the engineered strain E. coli W3110△4-P(H)CAI(H)SC produced 22.4 g/L fumarate in a 5-L fed-batch bioreactor. CONCLUSIONS: In this study, we offered rational metabolic engineering and flux optimization strategies for efficient production of fumarate. These strategies have great potential in developing efficient microbial cell factories for production of high-value added chemicals.

5.
Nat Commun ; 11(1): 2262, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385264

RESUMEN

Cell division can perturb the metabolic performance of industrial microbes. The C period of cell division starts from the initiation to the termination of DNA replication, whereas the D period is the bacterial division process. Here, we first shorten the C and D periods of E. coli by controlling the expression of the ribonucleotide reductase NrdAB and division proteins FtsZA through blue light and near-infrared light activation, respectively. It increases the specific surface area to 3.7 µm-1 and acetoin titer to 67.2 g·L-1. Next, we prolong the C and D periods of E. coli by regulating the expression of the ribonucleotide reductase NrdA and division protein inhibitor SulA through blue light activation-repression and near-infrared (NIR) light activation, respectively. It improves the cell volume to 52.6 µm3 and poly(lactate-co-3-hydroxybutyrate) titer to 14.31 g·L-1. Thus, the optogenetic-based cell division regulation strategy can improve the efficiency of microbial cell factories.


Asunto(s)
División Celular/efectos de la radiación , Escherichia coli/citología , Escherichia coli/efectos de la radiación , Luz , Acetoína/metabolismo , Reactores Biológicos/microbiología , Escherichia coli/genética , Escherichia coli/ultraestructura , Genes Bacterianos , Poliésteres/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA