Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Microbiol Res ; 285: 127784, 2024 Aug.
Article En | MEDLINE | ID: mdl-38824820

Fusarium crown rot (FCR) caused by Fusarium pseudograminearum poses a significant threat to wheat production in the Huang-Huai-Hai region of China. However, the pathogenic mechanism of F. pseudograminearum is still poorly understood. Zn2Cys6 transcription factors, which are exclusive to fungi, play pivotal roles in regulating fungal development, drug resistance, pathogenicity, and secondary metabolism. In this study, we present the functional characterization of a Zn2Cys6 transcription factor F. pseudograminearum, designated Fp487. In F. pseudograminearum, Fp487 is shown to be required for mycelial growth through gene knockout and phenotypic analyses. Compared with wild-type CF14047, the ∆Fp487 mutant displayed a slight reduction in growth rate but a significant decrease in conidiogenesis, pathogenicity and 3-acetyl-deoxynivalenol (3AcDON) production. Moreover, the mutant exhibited heightened sensitivity to oxidative and cytomembrane stress. Furthermore, we synthesized dsRNA from the Fp487 gene in vitro, resulting in a reduction in the growth rate of F. pseudograminearum and its virulence on barley leaves through spray-induced gene silencing (SIGS). Notably, this study makes the first instance of inducing the expression of abundant dsRNA from F. pseudograminearum by engineering the Escherichia coli strain HT115 (DE3) and utilizing the SIGS technique to evaluate the virulence effect of dsRNA on F. pseudograminearum. In conclusion, our findings revealed the crucial role of Fp487 in regulating pathogenicity, stress responses, DON production, and conidiogenesis in F. pseudograminearum. Furthermore, Fp487 is a potential RNAi-based target for FCR control.


Fungal Proteins , Fusarium , Gene Expression Regulation, Fungal , Hordeum , Plant Diseases , Transcription Factors , Fusarium/genetics , Fusarium/pathogenicity , Fusarium/growth & development , Fusarium/metabolism , Plant Diseases/microbiology , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Hordeum/microbiology , Spores, Fungal/growth & development , Spores, Fungal/genetics , Triticum/microbiology , Plant Leaves/microbiology , Gene Knockout Techniques , China , Mycelium/growth & development , Gene Silencing
2.
Insects ; 15(6)2024 Jun 07.
Article En | MEDLINE | ID: mdl-38921148

Phthorimaea absoluta (Meyrick) is an invasive pest that has caused damage to tomatoes and other crops in China since 2017. Pest control is mainly based on chemical methods that pose significant threats to food safety and environmental and ecological security. Light-induced control, a green prevention and control technology, has gained attention recently. However, current light-trapping technology is non-specific, attracting targeted pests alongside natural enemies and non-target organisms. In this study, we characterized the phototactic behavior of tomato leaf miners for the development a specific light-trapping technology for pest control. In situ hybridization revealed opsin expression throughout the body. Furthermore, we investigated the tropism of pests (wild T. absoluta, Toxoptera graminum, and Bemisia tabaci) and natural enemies (Nesidiocoris tenuis and Trichogramma pintoi) using a wavelength-lamp tropism experiment. We found that 365 ± 5 nm light could accurately trap wild P. absoluta without trapping natural enemies and other insects. Finally, we analyzed the phototactic behavior of the mutant strains LW2(-/-) and BL(-/-). LW2 and BL mutants showed significant differences in phototactic behavior. The LW2(-/-) strain was attracted to light at 390 ± 5 nm and the BL(-/-) strain was unresponsive to any light. Our findings will help to develop specific light-trapping technology for controlling tomato leaf miners, providing a basis for understanding pest population dynamics and protecting crops against natural enemies.

3.
Insect Mol Biol ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38808749

DNA methylase 1 (Dnmt1) is an important regulatory factor associated with biochemical signals required for insect development. It responds to changes in the environment and triggers phenotypic plasticity. Meanwhile, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)-a destructive invasive pest-can rapidly invade and adapt to different habitats; however, the role of Dnmt1 in this organism has not been elucidated. Accordingly, this study investigates the mechanism(s) underlying the rapid adaptation of Tuta absoluta to temperature stress. Potential regulatory genes were screened via RNAi (RNA interference), and the DNA methylase in Tuta absoluta was cloned by RACE (Rapid amplification of cDNA ends). TaDnmt1 was identified as a potential regulatory gene via bioinformatics; its expression was evaluated in response to temperature stress and during different development stages using real-time polymerase chain reaction. Results revealed that TaDnmt1 participates in hot/cold tolerance, temperature preference and larval development. The full-length cDNA sequence of TaDnmt1 is 3765 bp and encodes a 1254 kDa protein with typical Dnmt1 node-conserved structural features and six conserved DNA-binding active motifs. Moreover, TaDnmt1 expression is significantly altered by temperature stress treatments and within different development stages. Hence, TaDnmt1 likely contributes to temperature responses and organismal development. Furthermore, after treating with double-stranded RNA and exposing Tuta absoluta to 35°C heat shock or -12°C cold shock for 1 h, the survival rate significantly decreases; the preferred temperature is 2°C lower than that of the control group. In addition, the epidermal segments become enlarged and irregularly folded while the surface dries up. This results in a significant increase in larval mortality (57%) and a decrease in pupation (49.3%) and eclosion (50.9%) rates. Hence, TaDnmt1 contributes to temperature stress responses and temperature perception, as well as organismal growth and development, via DNA methylation regulation. These findings suggest that the rapid geographic expansion of T absoluta has been closely associated with TaDnmt1-mediated temperature tolerance. This study advances the research on 'thermos Dnmt' and provides a potential target for RNAi-driven regulation of Tuta absoluta.

4.
Materials (Basel) ; 17(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673086

PC/ABS composites are commonly used in airbag covers. In this paper, uniaxial tensile experiments of a PC/ABS composite at different temperatures and strain rates were conducted. The results showed that the temperature and loading rate affect the mechanical properties of the PC/ABS composite. As the temperature increases, the yield stress decreases and the strain at the moment of fracture increases, but the strain rate at the same temperature has a relatively small effect on the mechanical properties, which are similar to ductile materials. The experimental results were applied to the Abaqus model which considered thermal effects and the exact Johnson-Cook constitutive parameters were calculated by applying the inverse method. Based on the constitutive model and the failure analysis findings acquired by DIC, the uniaxial tensile test at the room temperature and varied strain rates were simulated and compared to the test results, which accurately reproduced the test process. The experiment on target plate intrusion of the PC/ABS composite was designed, and a finite-element model was established to simulate the experimental process. The results were compared with the experiments, which showed that the constitutive and the failure fracture strains were valid.

5.
J Fungi (Basel) ; 10(3)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38535216

GDP-mannose transporters (GMTs) have been implicated in the virulence of some important pathogenic fungi, and guanosine diphosphate (GDP) mannose transporters transport GDP-mannose from the cytosol to the Golgi lumen prior to mannosylation, where mannose attaches to the modified protein. GMTs could be potential targets for new antifungal drugs, as disruption of any step in GDP-mannose biosynthesis can affect fungal viability, growth, or virulence. To date, the GDP-mannose transporter has been extensively studied in yeast, but its biological function in fungi, particularly F. graminearum, is still unclear. In this experimental study, the role of the GDP-mannose transporter in F. graminearum was investigated by analysing the VRG4 gene. FgGmtA and FgGmtB were blastp-derived from their Scvrg4 protein sequences and proved to be their functional homologues. The mutant and complementary strains of FgGmtA, FgGmtB and FgGmtA&B genes were generated and used to evaluate the effect of the two GMTs genes on mycelial growth, asexual reproduction, sexual reproduction, cell wall sensitivity, glyphosate synthesis and drug susceptibility. Only in the FgGmtB and FgGmtA&B mutants was the rate of mycelial growth slowed, conidium production increased, sexual reproduction impaired, cell wall sensitivity increased, glycemic content decreased, and drug sensitivity reduced. The results of the pathogenicity assessment of GMTs showed that only FgGmtB affects the patogenicity of F. graminearum. At the same time, the effect of GMTs on the ability of rhinoceros to synthesise DON toxins was investigated and the results showed that the ability of ΔFgGmtB and ΔFgGmtA&B mutants to produce the DON toxin was significantly reduced, and the expression of toxin-related genes was also reduced.

6.
Int J Biol Macromol ; 265(Pt 1): 130636, 2024 Apr.
Article En | MEDLINE | ID: mdl-38467214

In insects, vision is crucial in finding host plants, but its role in nocturnal insects is largely unknown. Vision involves responses to specific spectra of photon wavelengths and opsins plays an important role in this process. Long-wavelength sensitive opsin (LW opsin) and blue-sensitive opsin (BL opsin) are main visual opsin proteins and play important in behavior regulation.We used CRISPR/Cas9 technology to mutate the long-wavelength-sensitive and blue wavelength-sensitive genes and explored the role of vision in the nocturnal invasive pest Tuta absoluta. Light wave experiments revealed that LW2(-/-) and BL(-/-) mutants showed abnormal wavelength tropism. Both LW2 and BL mutations affected the preference of T. absoluta for the green environment. Mutations in LW2 and BL are necessary to inhibit visual attraction. The elimination of LW2 and BL affected the preference of leaf moths for green plants, and mutations in both induced a preference in moths for white plants. Behavioral changes resulting from LW2(-/-) and BL(-/-) mutants were not affected by sense of smell, further supporting the regulatory role of vision in insect behavior. To the best of our knowledge, this is the first study to reveal that vision, not smell, plays an important role in the host-seeking behavior of nocturnal insects at night, of which LW2 and BL opsins are key regulatory factors. These study findings will drive the development of the "vision-ecology" theory.


Color Vision , Moths , Animals , Opsins/genetics , Opsins/metabolism , Introduced Species , Moths/genetics , Moths/metabolism , Insecta/metabolism
7.
Plant Biotechnol J ; 22(7): 1929-1941, 2024 Jul.
Article En | MEDLINE | ID: mdl-38366355

Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over- or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plant Arabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock-down of TaMKP1 by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused by Puccinia striiformis f. sp. tritici (Pst) and powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt), indicating that TaMKP1 negatively regulates disease resistance in wheat. Unexpectedly, while Tamkp1 mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild-type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK-mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.


CRISPR-Cas Systems , Disease Resistance , Plant Diseases , Plant Immunity , Triticum , Triticum/genetics , Triticum/microbiology , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Immunity/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Ascomycota/physiology , Mutagenesis , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Puccinia/physiology , Plants, Genetically Modified
8.
Front Plant Sci ; 14: 1297580, 2023.
Article En | MEDLINE | ID: mdl-38078075

Wheat powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most serious foliar diseases of wheat, causing grain yield and quality degradation by affecting plant photosynthesis. It is an effective method to improve the disease resistance of wheat plants by molecular breeding. With the continuous development of sequencing technology, long intergenic noncoding RNAs (lincRNAs) have been discovered in many eukaryotes and act as key regulators of many cellular processes. In this study, 12 sets of RNA-seq data from wheat leaves pre- and post-pathogen infection were analyzed and 2,266 candidate lincRNAs were identified. Consistent with previous findings, lincRNA has shorter length and fewer exons than mRNA. The results of differential expression analysis showed that 486 DE-lincRNAs were selected as lincRNAs that could respond to powdery mildew stress. Since lincRNAs may be functionally related to their adjacent target genes, the target genes of these lincRNAs were predicted, and the GO and KEGG functional annotations of the predicted target genes were performed. Integrating the functions of target genes and the biological processes in which they were involved uncovered 23 lincRNAs that may promote or inhibit the occurrence of wheat powdery mildew. Co-expression patterns of lincRNAs with their adjacent mRNAs showed that some lincRNAs showed significant correlation with the expression patterns of their potential target genes. These suggested an involvement of lincRNAs in pathogen stress response, which will provide a further understanding of the pathogenic mechanism of wheat powdery mildew.

9.
Plant Physiol Biochem ; 204: 108139, 2023 Nov.
Article En | MEDLINE | ID: mdl-37883917

Glutathione peroxidase (GPX) is a crucial enzyme that scavenges reactive oxygen species in plants, playing a vital role in enhancing plant stress resistance. In this study, we identified 14 glutathione peroxidase genes (TaGPXs) from common hexaploid wheat (Triticum aestivum L.). These genes were subsequently categorized into three distinct groups based on their phylogenetic relationships. Simultaneously, a preliminarily analysis was conducted on the protein characteristics, chromosome localization, gene structure, cis-regulatory elements and transcriptome. Using reverse transcription quantitative PCR to analyze the expression patterns of five GPX genes that were investigated under various exogenous hormone treatments. According to the qRT-PCR analysis, it indicated that TaGPX genes have the distinct expression patterns. The enzyme activities in transiently overexpressed Nicotiana benthamiana (TaGPX3.2A and TaGPX3.4A) leaves were measured under salt and drought stresses, showed that peroxidase (POD) exhibited higher enzyme activity under stresses. Silencing TaGPX3.2A by virus-induced gene silencing (VIGS) led to reduced resistance of wheat to Fusarium graminearum, indicating that TaGPX3.2A plays a crucial role in enhancing wheat resistance against F. graminearum. This research provides a foundational basis for further investigations on the functional characterization of TaGPXs family members. And in the future it is provides valuable resources for genetic improvement of wheat resistance.


Genome, Plant , Triticum , Triticum/metabolism , Glutathione Peroxidase/metabolism , Gene Expression Profiling , Disease Resistance/genetics , Phylogeny , Multigene Family , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
10.
Int J Biol Macromol ; 253(Pt 5): 127215, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37793527

Light-harvesting chlorophyll a/b binding proteins are encoded by nucleus genes and widely involve in capturing light energy, transferring energy, and responding to various stresses. However, their roles in wheat photosynthesis and stress tolerance are largely unknown. Here, Triticum aestivumlight-harvesting chlorophyll a/b binding protein TaLhc2 was identified. It showed subcellular localization in chloroplast, contained light responsive cis-elements, and highly expressed in green tissues and down-regulated by multiple stresses. TaLhc2 promoted the colonization of hemi-biotrophic pathogen; further analysis showed that TaLhc2 strengthened BAX-induced cell death, enhanced the ROS accumulation, and up-regulated pathogenesis-related genes; those results suggested that TaLhc2 has adverse influence on host immunity and function as a susceptible gene, thus host decreased its expression when faced with pathogen infection. RT-qPCR results showed that TaLhc2 was down-regulated by drought and salt stresses, while TaLhc2 improved the ROS accumulation under the two stresses, suggesting TaLhc2 may participate in wheat responding to abiotic stress. Additionally, TaLhc2 can increase the content of total chlorophyll and carotenoid by 1.3 % and 2.9 %, increase the net photosynthetic rate by 18 %, thus promote plant photosynthesis. Conclusively, we preliminarily deciphered the function of TaLhc2 in biotic/abiotic stresses and photosynthesis, which laid foundation for its usage in wheat breeding.


Plant Proteins , Triticum , Triticum/metabolism , Chlorophyll A/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Reactive Oxygen Species/metabolism , Plants, Genetically Modified/genetics , Photosynthesis , Stress, Physiological/genetics , Gene Expression Regulation, Plant
11.
J Agric Food Chem ; 71(36): 13535-13545, 2023 Sep 13.
Article En | MEDLINE | ID: mdl-37665660

Plant lysin motif (LysM) ectodomain receptors interact with pathogen-associated molecular patterns (PAMPs) and have critical functions in plant-microbe interactions. In this study, 65 LysM family genes were identified using the recent version of the reference sequence of bread wheat (Triticum aestivum), in which 23, 16, 20, and 6 members belonged to LysM-containing receptor-like kinases (LYKs), LysM-containing receptor-like proteins (LYPs), extracellular LysM proteins (LysMes), and intracellular nonsecretory LysM proteins (LysMns), respectively. The study found that TaCEBiP, TaLYK5, and TaCERK1 were highly responsive to PAMP elicitors and phytopathogens, with TaCEBiP and TaLYK5 binding directly to chitin. TaCERK1 acted as a coreceptor with TaCEBiP and TaLYK5 at the plasma membrane. Overexpression of TaCEBiP, TaLYK5, and TaCERK1 in Nicotiana benthamiana leaves exhibited enhanced resistance to Sclerotinia sclerotiorum. Subsequently, knocking down TaCEBiP, TaLYK5, and TaCERK1 genes with barley stripe mosaic virus-VIGS compromised the wheat defense response to an avirulent strain of Puccinia striiformis. The study concluded that wheat has two synergistic chitin perception systems for detecting pathogen elicitors, with the activated CERK1 intracellular kinase domain leading to signaling transduction. This research provides valuable insights into the functional roles and regulatory mechanisms of wheat LysM members under biotic stress.


Chitin , Triticum , Triticum/genetics , Bread , Cell Membrane , Immunity
12.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article En | MEDLINE | ID: mdl-37762550

Unknown functional domain (DUF) proteins constitute a large number of functionally uncharacterized protein families in eukaryotes. DUF724s play crucial roles in plants. However, the insight understanding of wheat TaDUF724s is currently lacking. To explore the possible function of TaDUF724s in wheat growth and development and stress response, the family members were systematically identified and characterized. In total, 14 TaDUF724s were detected from a wheat reference genome; they are unevenly distributed across the 11 chromosomes, and, according to chromosome location, they were named TaDUF724-1 to TaDUF724-14. Evolution analysis revealed that TaDUF724s were under negative selection, and fragment replication was the main reason for family expansion. All TaDUF724s are unstable proteins; most TaDUF724s are acidic and hydrophilic. They were predicted to be located in the nucleus and chloroplast. The promoter regions of TaDUF724s were enriched with the cis-elements functionally associated with growth and development, as well as being hormone-responsive. Expression profiling showed that TaDUF724-9 was highly expressed in seedings, roots, leaves, stems, spikes and grains, and strongly expressed throughout the whole growth period. The 12 TaDUF724 were post-transcription regulated by 12 wheat MicroRNA (miRNA) through cleavage and translation. RT-qPCR showed that six TaDUF724s were regulated by biological and abiotic stresses. Conclusively, TaDUF724s were systematically analyzed using bioinformatics methods, which laid a theoretical foundation for clarifying the function of TaDUF724s in wheat.


Genome, Plant , Triticum , Triticum/metabolism , Multigene Family , Computational Biology/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Phylogeny , Gene Expression Profiling/methods
13.
J Fungi (Basel) ; 9(8)2023 Aug 14.
Article En | MEDLINE | ID: mdl-37623617

Sharp eyespot is a crucial disease affecting cereal plants, such as bread wheat (Triticum aestivum) and barley (Hordeum vulgare), and is primarily caused by the pathogenic fungus Rhizoctonia cerealis. As disease severity has increased, it has become imperative to find an effective and reasonable control strategy. One such strategy is the use of the trehalose analog, validamycin, which has been shown to have a potent inhibitory effect on several trehalases found in both insects and fungi, and is widely used as a fungicide in agriculture. In this study, we demonstrated that 0.5 µg/mL validamycin on PDA plates had an inhibitory effect on R. cerealis strain R0301, but had no significant impact on Fusarium graminearum strain PH-1. Except for its inhibiting the trehalase activity of pathogenic fungi, little is known about its mechanism of action. Six trehalase genes were identified in the genome of R. cerealis, including one neutral trehalase and five acidic trehalase genes. Enzyme activity assays indicated that treatment with 5 µg/mL validamycin significantly reduces trehalase activity, providing evidence that validamycin treatment does indeed affect trehalase, even though the expression levels of most trehalase genes, except Rc17406, were not obviously affected. Transcriptome analysis revealed that treatment with validamycin downregulated genes involved in metabolic processes, ribosome biogenesis, and pathogenicity in the R. cerealis. KEGG pathway analysis further showed that validamycin affected genes related to the MAPK signaling pathway, with a significant decrease in ribosome synthesis and assembly. In conclusion, our results indicated that validamycin not only inhibits trehalose activity, but also affects the ribosome synthesis and MAPK pathways of R. cerealis, leading to the suppression of fungal growth and pesticidal effects. This study provides novel insights into the mechanism of action of validamycin.

14.
Front Plant Sci ; 14: 1078299, 2023.
Article En | MEDLINE | ID: mdl-36844102

Background: The CorA / MGT / MRS2 family proteins are an important group of magnesium transporter proteins that maintain magnesium ion homeostasis in plant cells. However, little is known about the MGT functions in wheat. Methods: The known MGT sequences were used as queries to BlastP against wheat genome IWGSC RefSeq v2.1 assembly (E-value <10-5). Chromosome localization information for each TaMGT gene was obtained from the GFF3 file of the wheat genome data (IWGSCv2.1).The sequence of 1500 bp upstream of the TaMGT genes was extracted from the wheat genome data. The cis-elements were analyzed using PlantCARE online tool. Result: A total of 24 MGT genes were identified on 18 chromosomes of wheat. After functional domain analysis, only TaMGT1A, TaMGT1B, and TaMGT1D had GMN mutations to AMN, while all the other genes had conserved GMN tripeptide motifs. Expression profiling showed that the TaMGT genes were differentially expressed under different stresses and at different growth and development stages. The expression levels of TaMGT4B and TaMGT4A were significantly up-regulated in cold damage. In addition, qRT-PCR results also confirmed that these TaMGT genes are involved in the wheat abiotic stress responses. Conclusion: In conclusion, The results of our research provide a theoretical basis for further research on the function of TaMGT gene family in wheat.

15.
J Nanobiotechnology ; 21(1): 2, 2023 Jan 03.
Article En | MEDLINE | ID: mdl-36593514

BACKGROUND: Silica nanoparticles (SiNPs) have been demonstrated to have beneficial effects on plant growth and development, especially under biotic and abiotic stresses. However, the mechanisms of SiNPs-mediated plant growth strengthening are still unclear, especially under field condition. In this study, we evaluated the effect of SiNPs on the growth and sugar and hormone metabolisms of wheat in the field. RESULTS: SiNPs increased tillers and elongated internodes by 66.7% and 27.4%, respectively, resulting in a larger biomass. SiNPs can increase the net photosynthetic rate by increasing total chlorophyll contents. We speculated that SiNPs can regulate the growth of leaves and stems, partly by regulating the metabolisms of plant hormones and soluble sugar. Specifically, SiNPs can increase auxin (IAA) and fructose contents, which can promote wheat growth directly or indirectly. Furthermore, SiNPs increased the expression levels of key pathway genes related to soluble sugars (SPS, SUS, and α-glucosidase), chlorophyll (CHLH, CAO, and POR), IAA (TIR1), and abscisic acid (ABA) (PYR/PYL, PP2C, SnRK2, and ABF), whereas the expression levels of genes related to CTKs (IPT) was decreased after SiNPs treatment. CONCLUSIONS: This study shows that SiNPs can promote wheat growth and provides a theoretical foundation for the application of SiNPs in field conditions.


Nanoparticles , Triticum , Triticum/metabolism , Silicon Dioxide , Chlorophyll , Sugars , Hormones
16.
Front Plant Sci ; 13: 1055213, 2022.
Article En | MEDLINE | ID: mdl-36531390

Fusarium head blight (FHB) is a global wheat grain disease caused by Fusarium graminearum. Biological control of FHB is considered to be an alternative disease management strategy that is environmentally benign, durable, and compatible with other control measures. In this study, to screen antagonistic bacteria with the potential to against FHB, 45 strains were isolated from different tissues of wheat. Among them, seven strains appeared to effectively inhibit F. graminearum growth, the antagonistic bacterium named XY-1 showed a highly antagonistic effect against FHB using dual culture assays. The strain XY-1 was identified as Bacillus amyloliquefaciens by 16S rDNA sequence. Antibiotic tolerance of antagonistic bacteria showed that XY-1 had antagonistic activity against Colletotrichum gloeosporioides, Rhizoctonia solani, Sclerotium rolfsii, and Alternaria alternata. Nutrition tests showed that the most suitable carbon and nitrogen sources were glucose and beef extract, respectively. The optimum growth temperature and pH value were 28 ℃ and 7.4. Antibiotics tolerance cultivation showed that XY-1 had strong resistance to Chloramphenicol and Ampicillin. Wheat spikes inoculation antagonism tests showed that strain XY-1 displayed strong antifungal activity against F. graminearum. Our study laid a theoretical foundation for the application of strain XY-1 as a biological agent in the field to control FHB.

17.
Front Plant Sci ; 13: 982457, 2022.
Article En | MEDLINE | ID: mdl-36247561

Phenylalanine ammonia-lyase (PAL) is a key enzyme in the phenylalanine metabolism pathway and plays an important role in plant growth and stress response. It has been widely reported in plants, but less studied in wheat. In this study, 54 PAL genes were identified in the wheat genome. Based on phylogenetic analysis, the 54 TaPAL genes were divided into four groups (I, II, III, and IV). Then, the expression levels of TaPALs under biotic stresses were analyzed by transcriptome data analysis. The results showed that 31 genes were up-regulated and one gene was down-regulated after inoculation with Fusarium graminearum, 11 genes were up-regulated and 14 genes were down-regulated after inoculation with Puccinia striiformis, and 32 up-regulated and three down-regulated genes after inoculation with powdery mildew. The expression patterns of the five TaPALs were further analyzed by qRT-PCR. After inoculation with F. graminearum, the expression levels of five TaPALs were up-regulated. However, the TaPALs (expect TaPAL49) were down-regulated when inoculated with P. striiformis. Finally, the functions of TaPAL32 and TaPAL42 in resistance of wheat to the stripe rust were further analyzed by virus induced gene silencing (VIGS) assays. The results showed that the disease severity of TaPAL32 and TaPAL42 silenced plants was higher than that of control plants at 14 days after inoculation. It indicated that these two genes played a positive role in wheat stripe rust resistance. This study provided new evidence support for the functional study of PAL genes in wheat, and provided potential application value for the breeding of wheat resistant varieties.

18.
Front Plant Sci ; 13: 981281, 2022.
Article En | MEDLINE | ID: mdl-36186038

There is growing evidences indicating that long intergenic ncRNAs (lincRNAs) play key roles in plant development and stress responses. To research tomato lincRNA functions during the interaction between tomato and Ralstonia solanacearum, RNA-seq data of tomato plants inoculated with R. solanacearum was analyzed. In this study, 315 possible lincRNAs were identified from RNA-seq data. Then 23 differentially expressed lincRNAs between tomato plants inoculated with R. solanacearum and control were identified and a total of 171 possible target genes for these differentially expressed lincRNAs were predicted. Through GO and KEGG analysis, we found that lincRNA might be involved in jasmonic acid and ethylene signaling pathways to respond to tomato bacterial wilt infection. Furthermore, lincRNA may also be involved in regulating the expression of AGO protein. Subsequently, analysis of expression patterns between differentially expressed lincRNAs and adjacent mRNAs by qRT-PCR revealed that part of lincRNAs and their possible target genes exhibited positive correlation. Taken together, these results suggest that lincRNAs play potential roles in tomato against R. solanacearum infection and will provide fundamental information about the lincRNA-based plant defense mechanisms.

19.
Article En | MEDLINE | ID: mdl-35845598

Objective: To establish a prediction model for the risk evaluation of chronic kidney disease (CKD) to guide the management and prevention of CKD. Methods: A total of 1263 patients with CKD and 1948 patients without CKD admitted to the Tongde Hospital of the Zhejiang Province from January 1, 2008, to December 31, 2018, were retrospectively analyzed. Spearman's correlation was used to analyze the relationship between CKD and laboratory parameters. XGBoost, random forest, Naive Bayes, support vector machine, and multivariate logistic regression algorithms were employed to establish prediction models for the risk evaluation of CKD. The accuracy, precision, recall, F1 score, and area under the receiver operating curve (AUC) of each model were compared. The new bidirectional encoder representations from transformers with light gradient boosting machine (MD-BERT-LGBM) model was used to process the unstructured data and transform it into researchable unstructured vectors, and the AUC was compared before and after processing. Results: Differences in laboratory parameters between CKD and non-CKD patients were observed. The neutrophil ratio and white blood cell count were significantly associated with the occurrence of CKD. The XGBoost model demonstrated the best prediction effect (accuracy = 0.9088, precision = 0.9175, recall = 0.8244, F1 score = 0.8868, AUC = 0.8244), followed by the random forest model (accuracy = 0.9020, precision = 0.9318, recall = 0.7905, F1 score = 0.581, AUC = 0.9519). Comparatively, the predictions of the Naive Bayes and support vector machine models were inferior to those of the logistic regression model. The AUC of all models was improved to some extent after processing using the new MD-BERT-LGBM model. Conclusion: The new MD-BERT-LGBM model with the inclusion of unstructured data has contributed to the higher accuracy, sensitivity, and specificity of the prediction models. Clinical features such as age, gender, urinary white blood cells, urinary red blood cells, thrombin time, serum creatinine, and total cholesterol were associated with CKD incidence.

20.
Front Plant Sci ; 13: 934226, 2022.
Article En | MEDLINE | ID: mdl-35845708

Sucrose non-fermenting-1-related protein kinases (SnRKs) play vital roles in plant growth and stress responses. However, little is known about the SnRK functions in wheat. In this study, 149 TaSnRKs (wheat SnRKs) were identified and were divided into three subfamilies. A combination of public transcriptome data and real-time reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed the distinct expression patterns of TaSnRKs under various abiotic and biotic stresses. TaSnRK2.4-B, a member of SnRK2s, has different expression patterns under polyethylene glycol (PEG), sodium chloride (NaCl) treatment, and high concentrations of abscisic acid (ABA) application. Yeast two-hybrid assay indicated that TaSnRK2.4-B could interact with the SnRK2-interacting calcium sensor (SCS) in wheat and play a role in the ABA-dependent pathway. Moreover, TaSnRK2.4-B might be a negative regulator in wheat against pathogen infection. The present study provides valuable information for understanding the functions of the TaSnRK family and provides recommendations for future genetic improvement in wheat stress resistance.

...