Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Genet ; 61(6): 2330-2347, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37036640

RESUMEN

The members of PHOSPHATE 1 (PHO1) family play important roles in plant phosphate (Pi) transport and adaptation to Pi deficiency. The functions of PHO1 family proteins have been reported in several plant species, with the exception of Brassica species. Here, we identified 23, 23, and 44 putative PHO1 family genes in Brassica rapa, Brassica oleracea, and Brassica napus by whole genome analysis, respectively. The phylogenetic analysis divided PHO1 family proteins into eight groups, which represented the orthologous relationships among PHO1 members. The gene structure and the conserved motif analysis indicated that the most PHO1 family genes had similar gene structures and the PHO1 proteins shared mutual conserved motifs. The chromosome distribution analysis showed that the majority of BnPHO1 family genes distributed analogously at chromosomes with BrPHO1 and BoPHO1 family genes. The data showed that PHO1 family genes were highly conserved during evolution from diploid to tetraploid. Furthermore, the expression analysis showed that PHO1 family genes had different expression patterns in plant tissues, suggesting the diversity of gene functions in Brassica species. Meanwhile, the expression analysis also revealed that some PHO1 family genes were significantly responsive to Pi deficiency, suggesting that PHO1 family genes play critical roles in Pi uptake and homeostasis under low Pi stress. Altogether, the characteristics of PHO1 family genes provide a reliable groundwork for further dissecting their functions in Brassica species.


Asunto(s)
Brassica napus , Brassica , Brassica napus/genética , Brassica napus/metabolismo , Diploidia , Fosfatos/metabolismo , Filogenia , Familia de Multigenes , Brassica/genética , Brassica/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Genoma de Planta
2.
PeerJ ; 10: e12882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237467

RESUMEN

The MYB-CC family is a subtype within the MYB superfamily. This family contains an MYB domain and a predicted coiled-coil (CC) domain. Several MYB-CC transcription factors are involved in the plant's adaptability to low phosphate (Pi) stress. We identified 30, 34, and 55 MYB-CC genes in Brassica rapa, Brassica oleracea, and Brassica napus, respectively. The MYB-CC genes were divided into nine groups based on phylogenetic analysis. The analysis of the chromosome distribution and gene structure revealed that most MYB-CC genes retained the same relative position on the chromosomes and had similar gene structures during allotetraploidy. Evolutionary analysis showed that the ancestral whole-genome triplication (WGT) and the recent allopolyploidy are critical for the expansion of the MYB-CC gene family. The expression patterns of MYB-CC genes were found to be diverse in different tissues of the three Brassica species. Furthermore, the gene expression analysis under low Pi stress revealed that MYB-CC genes may be related to low Pi stress responses. These results may increase our understanding of MYB-CC gene family diversification and provide the basis for further analysis of the specific functions of MYB-CC genes in Brassica species.


Asunto(s)
Brassica napus , Brassica rapa , Brassica , Brassica/genética , Genoma de Planta/genética , Filogenia , Brassica napus/genética , Brassica rapa/genética
3.
Plant Physiol ; 178(1): 413-427, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30026290

RESUMEN

PHOSPHATE STARVATION RESPONSE1 (PHR1) is a key regulatory component of the response to phosphate (Pi) starvation. However, the regulation of PHR1 in this response remains poorly understood. Here, we report that PHR1 is a target of the transcription factors AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 and is positively regulated by auxin signaling in Arabidopsis (Arabidopsis thaliana) roots. PHR1 expression was induced by exogenous auxin and suppressed by auxin transport inhibitors in Arabidopsis roots. In the PHR1 promoter, three auxin-response elements, which are bound directly by ARF7 and ARF19, were shown to be essential for PHR1 expression. The arf7, arf19, and arf7 arf19 mutants showed down-regulated expression of PHR1 and downstream Pi starvation-induced genes in roots; they also exhibited defective Pi uptake in roots and overaccumulation of anthocyanin in shoots. The induction of lateral root formation in response to low Pi and to exogenous auxin was decreased in the phr1 mutant, whereas the expression of LATERAL ORGAN BOUNDARIES-DOMAIN16 (LBD16) and LBD29 was not changed significantly. PHR1 acted independently of LBD16 and LBD29 in the regulation of lateral root formation in response to low Pi. Under low-Pi conditions, lateral root impairment in the arf7 arf19 mutant was partially rescued by constitutive expression of PHR1, demonstrating that reduced PHR1 expression contributed to the arf7 arf19 phenotype. In addition to PHR1, other genes encoding MYB-CC members also were targets of ARF7 and ARF19. Our work thus reveals a mechanism coordinating auxin signaling and the PHR1 regulon in Arabidopsis responses to Pi deficiency.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Raíces de Plantas/genética , Factores de Transcripción/genética , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Mutación , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Elementos de Respuesta/genética , Factores de Transcripción/metabolismo
4.
PLoS One ; 12(6): e0179027, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28594951

RESUMEN

Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus.


Asunto(s)
Brassica napus/metabolismo , Aceites de Plantas/metabolismo , Semillas/metabolismo , Transcriptoma/genética , Brassica napus/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...