Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Water Environ Res ; 96(6): e11056, 2024 Jun.
Article En | MEDLINE | ID: mdl-38825347

Nitrate poses a potential threat to aquatic ecosystems. This study focuses on the sulfur autotrophic denitrification mechanism in the process of water culture wastewater treatment, which has been successfully applied to the degradation of nitrogen in water culture farm effluents. However, the coexistence of organic acids in the treatment process is a common environmental challenge, significantly affecting the activity of denitrifying bacteria. This paper aims to explore the effects of adding benzoic acid and lactic acid on denitrification performance, organic acid removal rate, and microbial population abundance in sulfur autotrophic denitrification systems under optimal operating conditions, sulfur deficiency, and high hydraulic load. In experiments with 50 mg·L-1 of benzoic acid or lactic acid alone, the results show that benzoic acid and lactic acid have a stimulating effect on denitrification activity, with the stimulating effect significantly greater than the inhibitory effect. Under optimal operating conditions, the average denitrification rate of the system remained above 99%; under S/N = 1.5 conditions, the average denitrification rate increased from 88.34% to 91.93% and 85.91%; under HRT = 6 h conditions, the average denitrification rate increased from 75.25% to 97.79% and 96.58%. In addition, the addition of organic acids led to a decrease in microbial population abundance. At the phylum level, Proteobacteria has always been the dominant bacterial genus, and its relative abundance significantly increased after the addition of benzoic acid, from 40.2% to 61.5% and 62.4%. At the genus level, Thiobacillus, Sulfurimonas, Chryseobacterium, and Thermomonas maintained high population abundances under different conditions. PRACTITIONER POINTS: Employing autotrophic denitrification process for treating high-nitrate wastewater. Utilizing organic acids as external carbon sources. Denitrifying bacteria demonstrate high utilization efficiency towards organic acids. Organic acids promote denitrification more than they inhibit it. The promotion is manifested in the enhancement of activity and microbial abundance.


Autotrophic Processes , Benzoic Acid , Denitrification , Lactic Acid , Sulfur , Benzoic Acid/metabolism , Sulfur/metabolism , Lactic Acid/metabolism , Bacteria/metabolism , Bacteria/classification , Microbiota/drug effects , Waste Disposal, Fluid/methods , Water Purification/methods
2.
Chem Biodivers ; : e202400634, 2024 May 10.
Article En | MEDLINE | ID: mdl-38726746

Molybdenum disulfide nanoflowers (MoS2 NFs) were prepared by hydrothermal method. The prepared MoS2 NFs was characterized by SEM, TEM, XRD, specific surface areas, Raman and XPS. The characterization results show that the flower-like spherical MoS2 is composed of many ultra-thin nanosheets with an average diameter of about 300-400 nm. MoS2 NFs also exhibits excellent absorption and high fluorescence intensity. In order to explore the biological behavior of MoS2 NFs, the interaction between MoS2 NFs and bovine serum albumin (BSA) was studied by UV-Vis absorption, fluorescence, synchronous fluorescence spectra, and cyclic voltammetry. The results of absorption and fluorescence show that MoS2 NFs and BSA interact strongly through the formation of complexes. The Stern-Volmer constant and the quenching constant was calculated about 3.79×107 L mol-1 and 3.79×1015 L mol-1 s-1, respectively. The synchronous fluorescence implied that MoS2 in the complex may mainly bind to tryptophan residues of BSA. The cyclic voltammograms indicated that the addition of BSA makes electron reduction of MoS2 NFs more difficult than the corresponding free state. These experimental results clarified the effective transportation and elimination of MoS2 NFs in the body by binding to BSA, and can provide useful guideline for estimating MoS2 NFs as a drug carrier.

3.
Chemosphere ; 358: 142270, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719126

To reduce the high cost of organic carbon sources in waste resource utilization in the cultivation of microalgae, volatile fatty acids (VFAs) derived from activated sludge were used as the sole carbon source to culture Chlorella sorokiniana under the heterotrophic cultivation. The addition of VFAs in the heterotrophic condition enhanced the total nitrogen (TN) and phosphorus (TP) removal of C. sorokiniana, which proved the advantageous microalgae in using VFAs in the heterotrophic culture after screening in the previous study. To discover the possible mechanism of nitrogen and phosphorus adsorption in heterotrophic conditions by microalgae, the effect of different ratios of VFAs (acetic acid (AA): propionic acid (PA): butyric acid (BA)) on the nutrient removal and growth properties of C. sorokiniana was studied. In the 8:1:1 group, the highest efficiency (77.19%) of VFAs assimilation, the highest biomass (0.80 g L-1) and lipid content (31.35%) were achieved, with the highest TN and TP removal efficiencies of 97.44 % and 91.02 %, respectively. Moreover, an aerobic denitrifying bacterium, Pseudomonas, was determined to be the dominant genus under this heterotrophic condition. This suggested that besides nitrate uptake and utilization by C. sorokiniana under the heterotrophy, the conduct of the denitrification process was also the main reason for obtaining high nitrogen removal efficiency.


Chlorella , Fatty Acids, Volatile , Heterotrophic Processes , Microalgae , Nitrogen , Phosphorus , Waste Disposal, Fluid , Wastewater , Chlorella/metabolism , Chlorella/growth & development , Fatty Acids, Volatile/metabolism , Nitrogen/metabolism , Microalgae/metabolism , Wastewater/chemistry , Phosphorus/metabolism , Waste Disposal, Fluid/methods , Sewage/microbiology , Biomass , Denitrification , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 298: 122790, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37148661

Two novel fluoride ion fluorescent probes (P1 and P2) containing perylene tetra-(alkoxycarbonyl) derivative (PTAC) and its copper chelate were designed and synthesized. The identification properties of the probes were studied by absorption and fluorescence methods. The results showed that the probes were highly selective and sensitive to fluoride ions. 1H NMR titration confirmed that the sensing mechanism involved the formation of H-bond between the O-H moiety and fluoride ions, and the coordination of copper ion could enhance the H-bond donor capacity of the receptor unit (O-H). The corresponding orbital electron distributions were calculated by density functional theory (DFT). In addition, fluoride ion can be easily detected by probe-coated Whatman filter paper without the need for expensive equipment. Until now, there have been few reports of such probes enhancing the capacity of the H-bond donor based on metal ion chelation. This study will contribute to the design and synthesis of novel sensitive perylene fluoride probes.

5.
Sci Total Environ ; 705: 135910, 2020 Feb 25.
Article En | MEDLINE | ID: mdl-31837544

Microeukaryotes play key roles in the structure and functioning of lotic ecosystems; however, little is known about the relative importance of the processes that drive planktonic microeukaryotic biogeography in rivers, especially the effects of anthropogenic inputs (e.g., wastewater discharge and pesticide and fertilizer use) on the taxonomic and functional diversity of microeukaryotes. Herein 18S ribosomal RNA sequencing was used to examine the assembly of microeukaryotes in samples from Xiaoqing River, a mid-sized river in north China that runs through urban and agricultural areas and then discharges into the Bohai Sea. We found that diversity of microeukaryote declined obviously due to the excessive disturbance of the urban and agricultural activities in the midstream of the river. Our results support the concept that species sorting caused by local pollution can largely determine microeukaryotic community structure when significant environmental gradients exist in polluted running-water ecosystems and that compositional dissimilarity increased with increases in the Euclidean distance of environmental variables. Variation of microeukaryotic diversity was mainly determined by changes in levels of nutrients, dissolved oxygen, turbidity, and salinity and they can affect the rare subcommunities significantly. Furthermore, zooplankton were dominated in rare taxa, meanwhile phytoplankton was composed by the abundant taxa mainly. These findings confirmed the dynamic character of riverine ecosystems and the significance of human activities in shaping microeukaryote diversity in rivers.


Ecosystem , Animals , China , Environmental Monitoring , Estuaries , Genes, rRNA , Humans , RNA, Ribosomal, 18S , Rivers
6.
Environ Monit Assess ; 191(10): 607, 2019 Sep 04.
Article En | MEDLINE | ID: mdl-31485756

The geochemical fractions of heavy metals in sediments are crucial indexes for their mobility and bioavailability evaluations. However, different drying processes of sediment pretreatment could change metal geochemical fractions, especially for Hg, which is potentially volatile. In this study, the influence of pretreatment methods including oven-drying, air-drying, freeze-drying, and fresh sediments on the analysis of Hg fractions in sediments was investigated. Results showed that remarkable differences of Hg concentration were observed between fresh sediments and dried pretreatment sediments (P < 0.05). Briefly, the concentrations of the water-soluble and human stomach acid-soluble fractions in oven-dried and air-dried sediments generally showed significant increasing trends compared with those in the fresh sediments, while the organo-chelated fraction exhibited significant decreasing trends. The cause of this phenomenon was primarily the oxidation of organic matter, aging process, and the diffusion of Hg into micropores. The significant loss was also observed at elemental Hg fraction due to its volatilization effect. The freeze-drying posed minor influence on changes of Hg fraction analysis compared with oven-drying and air-drying. Moreover, the total Hg concentrations in pretreated sediments showed a decline of varying degrees compared with those in fresh sediments ascribing to the volatilization of elemental Hg. Finally, Pearson correlation analysis further confirmed that freeze-drying could minimize the errors of the Hg fraction analysis in sediments.


Desiccation , Environmental Monitoring/methods , Geologic Sediments/chemistry , Mercury/analysis , Biological Availability , Soil Pollutants/analysis , Volatilization
7.
Environ Sci Pollut Res Int ; 23(8): 7776-85, 2016 Apr.
Article En | MEDLINE | ID: mdl-26755174

In order to determine whether bioaugmentation is an effective technique in wetlands before the plants were harvested, the nitrogen (N) removal from a constructed wetland (CW) planted with Phragmites was evaluated after inoculating with Paenibacillus sp. XP1 in Northern China. The experiment was loaded with secondary effluent of rural domestic wastewater (RDW) using the batch-loaded method for over a 17-day period in summer and autumn. Chemical oxygen demand (CODcr), ammonia nitrogen (NH3-N), and total nitrogen (TN) decreased significantly in the CW with Phragmites inoculated with Paenibacillus sp. XP1. Four days after treatments were set up, the removal efficiencies were found to be 76.2 % for CODcr, 83 % for NH3-N, and 63.8 % for TN in summer and 69.5 % for CODcr, 76.9 % for NH3-N, and 55.6 % for TN in autumn, which were higher than the control group without inoculation during the entire 17-day experiment. The inoculated bacteria did not have a noticeable effect on total phosphorus (TP) removal in autumn. However, bioaugmentation still keep a low P concentration in the whole CW. First-order kinetic model represented well the CODcr, TN, and TP decay in CWs with bioaugmentation, resulting in very good coefficients of determination, which ranged from 0.97 to 0.99. It indicated that bioaugmentation would be an effective treatment for pollutant removal from RDW in the CWs.


Nitrogen/isolation & purification , Paenibacillus/metabolism , Poaceae , Water Purification/methods , Wetlands , Biodegradation, Environmental , Biological Oxygen Demand Analysis , China , Denitrification , Phosphorus/isolation & purification , Pilot Projects , Plants , Seasons , Waste Disposal, Fluid , Wastewater/analysis
8.
Environ Technol ; 37(1): 64-73, 2016.
Article En | MEDLINE | ID: mdl-26086866

To enhance the degradation efficiency of microcystin (MC) in drinking water sludge (DWS), the underlying mechanisms between organic carbon (glucose) and the biodegradation of MC-LR under anoxic conditions were investigated by polymerase chain reaction-denaturing gradient gel electrophoresis technology. The addition of glucose reduced the rate of the MC-LR biodegradation indicating the occurrence of inhibition of degradation, and an increased inhibition was observed with increases in glucose concentration (0-10,000 mg/L). In addition, the community analysis indicated that the variety and the number of the microbes increased with the concentration of glucose amended (0 -1000 mg/L), but they decreased substantially with the addition of 10,000 mg/L of glucose. The phyla Firmicutes, Proteobacteria and Chloroflexi were found to be the dominant. Methylobacterium and Sphingomonas were MC-degrading bacteria and used glucose as a prior carbon source instead of MC, resulting in the decrease in the MC-LR biodegradation rate under anoxic conditions. Thus, reducing organic carbon could improve the anoxic biodegradation efficiency of MC in DWS.


Bacterial Toxins/metabolism , Drinking Water/microbiology , Glucose/metabolism , Microbiota/drug effects , Microcystins/metabolism , Sewage/microbiology , Water Pollutants, Chemical/metabolism , Anaerobiosis , Denaturing Gradient Gel Electrophoresis , Marine Toxins , Polymerase Chain Reaction , Wastewater/microbiology
9.
Bioresour Technol ; 165: 191-8, 2014 Aug.
Article En | MEDLINE | ID: mdl-24726136

The effects of environmental factors on cyanobacteria damage and microcystin-LR degradation in drinking water sludge were investigated under anoxic conditions. The rates of microcystin-LR release and degradation increased rapidly with the increasing temperature from 15°C to 40°C and the highest degradation rate of 99% was observed at 35°C within 10days. Compared to acidic conditions, microcystin-LR degraded more rapidly in weak alkali environments. In addition, the microbial community structures under different anoxic conditions were studied. The sequencing results showed that four phyla obtained from the DGGE profiles were as follows: Proteobacteria, Acidobacteria, Firmicutes and Cyanobacteria. Proteobacteria containing nine genera were the most common species. Pseudomonas, Methylosinus and Sphingomona all showed stronger activities and had significant increase as microcystin-LR degraded, so they should be responsible for the microcystin-LR degradation. This is the first report of Pseudomonas, Methylosinus and Sphingomonas as the microcystins-degrading microorganisms in anoxic drinking water sludge.


Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Drinking Water/microbiology , Sewage/microbiology , Anaerobiosis , Biodegradation, Environmental , Biodiversity , Cyanobacteria/genetics , DNA, Ribosomal/genetics , Denaturing Gradient Gel Electrophoresis , Hydrogen-Ion Concentration , Marine Toxins , Microcystins/isolation & purification , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Temperature
...